Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{\sqrt{7}}+\frac{1}{3\sqrt{8}}
Tāpirihia te 5 ki te 2, ka 7.
\frac{\sqrt{7}}{\left(\sqrt{7}\right)^{2}}+\frac{1}{3\sqrt{8}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\sqrt{7}}{7}+\frac{1}{3\sqrt{8}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\sqrt{7}}{7}+\frac{1}{3\times 2\sqrt{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{7}}{7}+\frac{1}{6\sqrt{2}}
Whakareatia te 3 ki te 2, ka 6.
\frac{\sqrt{7}}{7}+\frac{\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{6\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{7}}{7}+\frac{\sqrt{2}}{6\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{7}}{7}+\frac{\sqrt{2}}{12}
Whakareatia te 6 ki te 2, ka 12.
\frac{12\sqrt{7}}{84}+\frac{7\sqrt{2}}{84}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 7 me 12 ko 84. Whakareatia \frac{\sqrt{7}}{7} ki te \frac{12}{12}. Whakareatia \frac{\sqrt{2}}{12} ki te \frac{7}{7}.
\frac{12\sqrt{7}+7\sqrt{2}}{84}
Tā te mea he rite te tauraro o \frac{12\sqrt{7}}{84} me \frac{7\sqrt{2}}{84}, me tāpiri rāua mā te tāpiri i ō raua taurunga.