Aromātai
\frac{\sqrt{7}\left(\sqrt{14}+12\right)}{84}\approx 0.495815603
Tauwehe
\frac{\sqrt{7} {(\sqrt{2} \sqrt{7} + 12)}}{84} = 0.49581560320698514
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 1 }{ \sqrt{ 5+2 } } + \frac{ 1 }{ 3 \sqrt{ 8 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\sqrt{7}}+\frac{1}{3\sqrt{8}}
Tāpirihia te 5 ki te 2, ka 7.
\frac{\sqrt{7}}{\left(\sqrt{7}\right)^{2}}+\frac{1}{3\sqrt{8}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\sqrt{7}}{7}+\frac{1}{3\sqrt{8}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\sqrt{7}}{7}+\frac{1}{3\times 2\sqrt{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{7}}{7}+\frac{1}{6\sqrt{2}}
Whakareatia te 3 ki te 2, ka 6.
\frac{\sqrt{7}}{7}+\frac{\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{6\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{7}}{7}+\frac{\sqrt{2}}{6\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{7}}{7}+\frac{\sqrt{2}}{12}
Whakareatia te 6 ki te 2, ka 12.
\frac{12\sqrt{7}}{84}+\frac{7\sqrt{2}}{84}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 7 me 12 ko 84. Whakareatia \frac{\sqrt{7}}{7} ki te \frac{12}{12}. Whakareatia \frac{\sqrt{2}}{12} ki te \frac{7}{7}.
\frac{12\sqrt{7}+7\sqrt{2}}{84}
Tā te mea he rite te tauraro o \frac{12\sqrt{7}}{84} me \frac{7\sqrt{2}}{84}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}