Aromātai
\frac{\sqrt{7}}{7}+\frac{1}{3}\approx 0.711297806
Tauwehe
\frac{\sqrt{7} {(\sqrt{7} + 3)}}{21} = 0.7112978063425606
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\sqrt{7}}+\frac{1}{3}
Tāpirihia te 5 ki te 2, ka 7.
\frac{\sqrt{7}}{\left(\sqrt{7}\right)^{2}}+\frac{1}{3}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\sqrt{7}}{7}+\frac{1}{3}
Ko te pūrua o \sqrt{7} ko 7.
\frac{3\sqrt{7}}{21}+\frac{7}{21}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 7 me 3 ko 21. Whakareatia \frac{\sqrt{7}}{7} ki te \frac{3}{3}. Whakareatia \frac{1}{3} ki te \frac{7}{7}.
\frac{3\sqrt{7}+7}{21}
Tā te mea he rite te tauraro o \frac{3\sqrt{7}}{21} me \frac{7}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}