Aromātai
\frac{1}{4x^{2}}
Kimi Pārōnaki e ai ki x
-\frac{1}{2x^{3}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{2x}}{y}\times \frac{\frac{1}{2x}}{\frac{1}{y}}
Whakawehe 1 ki te \frac{y}{\frac{1}{2x}} mā te whakarea 1 ki te tau huripoki o \frac{y}{\frac{1}{2x}}.
\frac{1}{2xy}\times \frac{\frac{1}{2x}}{\frac{1}{y}}
Tuhia te \frac{\frac{1}{2x}}{y} hei hautanga kotahi.
\frac{1}{2xy}\times \frac{y}{2x}
Whakawehe \frac{1}{2x} ki te \frac{1}{y} mā te whakarea \frac{1}{2x} ki te tau huripoki o \frac{1}{y}.
\frac{y}{2xy\times 2x}
Me whakarea te \frac{1}{2xy} ki te \frac{y}{2x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2\times 2xx}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{1}{2\times 2x^{2}}
Whakareatia te x ki te x, ka x^{2}.
\frac{1}{4x^{2}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{2x}}{y}\times \frac{\frac{1}{2x}}{\frac{1}{y}})
Whakawehe 1 ki te \frac{y}{\frac{1}{2x}} mā te whakarea 1 ki te tau huripoki o \frac{y}{\frac{1}{2x}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2xy}\times \frac{\frac{1}{2x}}{\frac{1}{y}})
Tuhia te \frac{\frac{1}{2x}}{y} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2xy}\times \frac{y}{2x})
Whakawehe \frac{1}{2x} ki te \frac{1}{y} mā te whakarea \frac{1}{2x} ki te tau huripoki o \frac{1}{y}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y}{2xy\times 2x})
Me whakarea te \frac{1}{2xy} ki te \frac{y}{2x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2\times 2xx})
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2\times 2x^{2}})
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4x^{2}})
Whakareatia te 2 ki te 2, ka 4.
-\left(4x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(4x^{2}\right)^{-2}\times 2\times 4x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-8x^{1}\times \left(4x^{2}\right)^{-2}
Whakarūnātia.
-8x\times \left(4x^{2}\right)^{-2}
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}