Aromātai
\frac{4}{15}\approx 0.266666667
Tauwehe
\frac{2 ^ {2}}{3 \cdot 5} = 0.26666666666666666
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 1 }{ \frac{ 144 }{ 11 } +4+12+15+5 } \frac{ 144 }{ 11 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\frac{144}{11}+\frac{44}{11}+12+15+5}\times \frac{144}{11}
Me tahuri te 4 ki te hautau \frac{44}{11}.
\frac{1}{\frac{144+44}{11}+12+15+5}\times \frac{144}{11}
Tā te mea he rite te tauraro o \frac{144}{11} me \frac{44}{11}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{188}{11}+12+15+5}\times \frac{144}{11}
Tāpirihia te 144 ki te 44, ka 188.
\frac{1}{\frac{188}{11}+\frac{132}{11}+15+5}\times \frac{144}{11}
Me tahuri te 12 ki te hautau \frac{132}{11}.
\frac{1}{\frac{188+132}{11}+15+5}\times \frac{144}{11}
Tā te mea he rite te tauraro o \frac{188}{11} me \frac{132}{11}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{320}{11}+15+5}\times \frac{144}{11}
Tāpirihia te 188 ki te 132, ka 320.
\frac{1}{\frac{320}{11}+\frac{165}{11}+5}\times \frac{144}{11}
Me tahuri te 15 ki te hautau \frac{165}{11}.
\frac{1}{\frac{320+165}{11}+5}\times \frac{144}{11}
Tā te mea he rite te tauraro o \frac{320}{11} me \frac{165}{11}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{485}{11}+5}\times \frac{144}{11}
Tāpirihia te 320 ki te 165, ka 485.
\frac{1}{\frac{485}{11}+\frac{55}{11}}\times \frac{144}{11}
Me tahuri te 5 ki te hautau \frac{55}{11}.
\frac{1}{\frac{485+55}{11}}\times \frac{144}{11}
Tā te mea he rite te tauraro o \frac{485}{11} me \frac{55}{11}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{540}{11}}\times \frac{144}{11}
Tāpirihia te 485 ki te 55, ka 540.
1\times \frac{11}{540}\times \frac{144}{11}
Whakawehe 1 ki te \frac{540}{11} mā te whakarea 1 ki te tau huripoki o \frac{540}{11}.
\frac{11}{540}\times \frac{144}{11}
Whakareatia te 1 ki te \frac{11}{540}, ka \frac{11}{540}.
\frac{11\times 144}{540\times 11}
Me whakarea te \frac{11}{540} ki te \frac{144}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{144}{540}
Me whakakore tahi te 11 i te taurunga me te tauraro.
\frac{4}{15}
Whakahekea te hautanga \frac{144}{540} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 36.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}