Whakaoti mō x (complex solution)
x=-5+5\sqrt{287}i\approx -5+84.70537173i
x=-5\sqrt{287}i-5\approx -5-84.70537173i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\frac{x}{x\left(x+10\right)}-\frac{x+10}{x\left(x+10\right)}}=720
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+10 me x ko x\left(x+10\right). Whakareatia \frac{1}{x+10} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{x+10}{x+10}.
\frac{1}{\frac{x-\left(x+10\right)}{x\left(x+10\right)}}=720
Tā te mea he rite te tauraro o \frac{x}{x\left(x+10\right)} me \frac{x+10}{x\left(x+10\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{\frac{x-x-10}{x\left(x+10\right)}}=720
Mahia ngā whakarea i roto o x-\left(x+10\right).
\frac{1}{\frac{-10}{x\left(x+10\right)}}=720
Whakakotahitia ngā kupu rite i x-x-10.
\frac{x\left(x+10\right)}{-10}=720
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe 1 ki te \frac{-10}{x\left(x+10\right)} mā te whakarea 1 ki te tau huripoki o \frac{-10}{x\left(x+10\right)}.
\frac{x^{2}+10x}{-10}=720
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+10.
-\frac{1}{10}x^{2}-x=720
Whakawehea ia wā o x^{2}+10x ki te -10, kia riro ko -\frac{1}{10}x^{2}-x.
-\frac{1}{10}x^{2}-x-720=0
Tangohia te 720 mai i ngā taha e rua.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{1}{10}\right)\left(-720\right)}}{2\left(-\frac{1}{10}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{10} mō a, -1 mō b, me -720 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+\frac{2}{5}\left(-720\right)}}{2\left(-\frac{1}{10}\right)}
Whakareatia -4 ki te -\frac{1}{10}.
x=\frac{-\left(-1\right)±\sqrt{1-288}}{2\left(-\frac{1}{10}\right)}
Whakareatia \frac{2}{5} ki te -720.
x=\frac{-\left(-1\right)±\sqrt{-287}}{2\left(-\frac{1}{10}\right)}
Tāpiri 1 ki te -288.
x=\frac{-\left(-1\right)±\sqrt{287}i}{2\left(-\frac{1}{10}\right)}
Tuhia te pūtakerua o te -287.
x=\frac{1±\sqrt{287}i}{2\left(-\frac{1}{10}\right)}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{287}i}{-\frac{1}{5}}
Whakareatia 2 ki te -\frac{1}{10}.
x=\frac{1+\sqrt{287}i}{-\frac{1}{5}}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{287}i}{-\frac{1}{5}} ina he tāpiri te ±. Tāpiri 1 ki te i\sqrt{287}.
x=-5\sqrt{287}i-5
Whakawehe 1+i\sqrt{287} ki te -\frac{1}{5} mā te whakarea 1+i\sqrt{287} ki te tau huripoki o -\frac{1}{5}.
x=\frac{-\sqrt{287}i+1}{-\frac{1}{5}}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{287}i}{-\frac{1}{5}} ina he tango te ±. Tango i\sqrt{287} mai i 1.
x=-5+5\sqrt{287}i
Whakawehe 1-i\sqrt{287} ki te -\frac{1}{5} mā te whakarea 1-i\sqrt{287} ki te tau huripoki o -\frac{1}{5}.
x=-5\sqrt{287}i-5 x=-5+5\sqrt{287}i
Kua oti te whārite te whakatau.
\frac{1}{\frac{x}{x\left(x+10\right)}-\frac{x+10}{x\left(x+10\right)}}=720
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+10 me x ko x\left(x+10\right). Whakareatia \frac{1}{x+10} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{x+10}{x+10}.
\frac{1}{\frac{x-\left(x+10\right)}{x\left(x+10\right)}}=720
Tā te mea he rite te tauraro o \frac{x}{x\left(x+10\right)} me \frac{x+10}{x\left(x+10\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{\frac{x-x-10}{x\left(x+10\right)}}=720
Mahia ngā whakarea i roto o x-\left(x+10\right).
\frac{1}{\frac{-10}{x\left(x+10\right)}}=720
Whakakotahitia ngā kupu rite i x-x-10.
\frac{x\left(x+10\right)}{-10}=720
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe 1 ki te \frac{-10}{x\left(x+10\right)} mā te whakarea 1 ki te tau huripoki o \frac{-10}{x\left(x+10\right)}.
\frac{x^{2}+10x}{-10}=720
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+10.
-\frac{1}{10}x^{2}-x=720
Whakawehea ia wā o x^{2}+10x ki te -10, kia riro ko -\frac{1}{10}x^{2}-x.
\frac{-\frac{1}{10}x^{2}-x}{-\frac{1}{10}}=\frac{720}{-\frac{1}{10}}
Me whakarea ngā taha e rua ki te -10.
x^{2}+\left(-\frac{1}{-\frac{1}{10}}\right)x=\frac{720}{-\frac{1}{10}}
Mā te whakawehe ki te -\frac{1}{10} ka wetekia te whakareanga ki te -\frac{1}{10}.
x^{2}+10x=\frac{720}{-\frac{1}{10}}
Whakawehe -1 ki te -\frac{1}{10} mā te whakarea -1 ki te tau huripoki o -\frac{1}{10}.
x^{2}+10x=-7200
Whakawehe 720 ki te -\frac{1}{10} mā te whakarea 720 ki te tau huripoki o -\frac{1}{10}.
x^{2}+10x+5^{2}=-7200+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=-7200+25
Pūrua 5.
x^{2}+10x+25=-7175
Tāpiri -7200 ki te 25.
\left(x+5\right)^{2}=-7175
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{-7175}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=5\sqrt{287}i x+5=-5\sqrt{287}i
Whakarūnātia.
x=-5+5\sqrt{287}i x=-5\sqrt{287}i-5
Me tango 5 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}