Whakaoti mō x
x=5\sqrt{20737}+715\approx 1435.017360902
x=715-5\sqrt{20737}\approx -5.017360902
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\frac{x}{x\left(x+10\right)}+\frac{x+10}{x\left(x+10\right)}}=720
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+10 me x ko x\left(x+10\right). Whakareatia \frac{1}{x+10} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{x+10}{x+10}.
\frac{1}{\frac{x+x+10}{x\left(x+10\right)}}=720
Tā te mea he rite te tauraro o \frac{x}{x\left(x+10\right)} me \frac{x+10}{x\left(x+10\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{2x+10}{x\left(x+10\right)}}=720
Whakakotahitia ngā kupu rite i x+x+10.
\frac{x\left(x+10\right)}{2x+10}=720
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe 1 ki te \frac{2x+10}{x\left(x+10\right)} mā te whakarea 1 ki te tau huripoki o \frac{2x+10}{x\left(x+10\right)}.
\frac{x^{2}+10x}{2x+10}=720
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+10.
\frac{x^{2}+10x}{2x+10}-720=0
Tangohia te 720 mai i ngā taha e rua.
\frac{x^{2}+10x}{2\left(x+5\right)}-720=0
Tauwehea te 2x+10.
\frac{x^{2}+10x}{2\left(x+5\right)}-\frac{720\times 2\left(x+5\right)}{2\left(x+5\right)}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 720 ki te \frac{2\left(x+5\right)}{2\left(x+5\right)}.
\frac{x^{2}+10x-720\times 2\left(x+5\right)}{2\left(x+5\right)}=0
Tā te mea he rite te tauraro o \frac{x^{2}+10x}{2\left(x+5\right)} me \frac{720\times 2\left(x+5\right)}{2\left(x+5\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}+10x-1440x-7200}{2\left(x+5\right)}=0
Mahia ngā whakarea i roto o x^{2}+10x-720\times 2\left(x+5\right).
\frac{x^{2}-1430x-7200}{2\left(x+5\right)}=0
Whakakotahitia ngā kupu rite i x^{2}+10x-1440x-7200.
x^{2}-1430x-7200=0
Tē taea kia ōrite te tāupe x ki -5 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x+5\right).
x=\frac{-\left(-1430\right)±\sqrt{\left(-1430\right)^{2}-4\left(-7200\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -1430 mō b, me -7200 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1430\right)±\sqrt{2044900-4\left(-7200\right)}}{2}
Pūrua -1430.
x=\frac{-\left(-1430\right)±\sqrt{2044900+28800}}{2}
Whakareatia -4 ki te -7200.
x=\frac{-\left(-1430\right)±\sqrt{2073700}}{2}
Tāpiri 2044900 ki te 28800.
x=\frac{-\left(-1430\right)±10\sqrt{20737}}{2}
Tuhia te pūtakerua o te 2073700.
x=\frac{1430±10\sqrt{20737}}{2}
Ko te tauaro o -1430 ko 1430.
x=\frac{10\sqrt{20737}+1430}{2}
Nā, me whakaoti te whārite x=\frac{1430±10\sqrt{20737}}{2} ina he tāpiri te ±. Tāpiri 1430 ki te 10\sqrt{20737}.
x=5\sqrt{20737}+715
Whakawehe 1430+10\sqrt{20737} ki te 2.
x=\frac{1430-10\sqrt{20737}}{2}
Nā, me whakaoti te whārite x=\frac{1430±10\sqrt{20737}}{2} ina he tango te ±. Tango 10\sqrt{20737} mai i 1430.
x=715-5\sqrt{20737}
Whakawehe 1430-10\sqrt{20737} ki te 2.
x=5\sqrt{20737}+715 x=715-5\sqrt{20737}
Kua oti te whārite te whakatau.
\frac{1}{\frac{x}{x\left(x+10\right)}+\frac{x+10}{x\left(x+10\right)}}=720
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+10 me x ko x\left(x+10\right). Whakareatia \frac{1}{x+10} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{x+10}{x+10}.
\frac{1}{\frac{x+x+10}{x\left(x+10\right)}}=720
Tā te mea he rite te tauraro o \frac{x}{x\left(x+10\right)} me \frac{x+10}{x\left(x+10\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{2x+10}{x\left(x+10\right)}}=720
Whakakotahitia ngā kupu rite i x+x+10.
\frac{x\left(x+10\right)}{2x+10}=720
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakawehe 1 ki te \frac{2x+10}{x\left(x+10\right)} mā te whakarea 1 ki te tau huripoki o \frac{2x+10}{x\left(x+10\right)}.
\frac{x^{2}+10x}{2x+10}=720
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+10.
x^{2}+10x=1440\left(x+5\right)
Tē taea kia ōrite te tāupe x ki -5 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x+5\right).
x^{2}+10x=1440x+7200
Whakamahia te āhuatanga tohatoha hei whakarea te 1440 ki te x+5.
x^{2}+10x-1440x=7200
Tangohia te 1440x mai i ngā taha e rua.
x^{2}-1430x=7200
Pahekotia te 10x me -1440x, ka -1430x.
x^{2}-1430x+\left(-715\right)^{2}=7200+\left(-715\right)^{2}
Whakawehea te -1430, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -715. Nā, tāpiria te pūrua o te -715 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-1430x+511225=7200+511225
Pūrua -715.
x^{2}-1430x+511225=518425
Tāpiri 7200 ki te 511225.
\left(x-715\right)^{2}=518425
Tauwehea x^{2}-1430x+511225. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-715\right)^{2}}=\sqrt{518425}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-715=5\sqrt{20737} x-715=-5\sqrt{20737}
Whakarūnātia.
x=5\sqrt{20737}+715 x=715-5\sqrt{20737}
Me tāpiri 715 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}