Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{0-0\times 59\times 0\times 77}{\sqrt{1-\left(0\times 59\right)^{2}}\sqrt{1-\left(0\times 77\right)^{2}}}
Whakareatia te 0 ki te 46, ka 0.
\frac{0-0\times 0\times 77}{\sqrt{1-\left(0\times 59\right)^{2}}\sqrt{1-\left(0\times 77\right)^{2}}}
Whakareatia te 0 ki te 59, ka 0.
\frac{0-0\times 77}{\sqrt{1-\left(0\times 59\right)^{2}}\sqrt{1-\left(0\times 77\right)^{2}}}
Whakareatia te 0 ki te 0, ka 0.
\frac{0-0}{\sqrt{1-\left(0\times 59\right)^{2}}\sqrt{1-\left(0\times 77\right)^{2}}}
Whakareatia te 0 ki te 77, ka 0.
\frac{0}{\sqrt{1-\left(0\times 59\right)^{2}}\sqrt{1-\left(0\times 77\right)^{2}}}
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
\frac{0}{\sqrt{1-0^{2}}\sqrt{1-\left(0\times 77\right)^{2}}}
Whakareatia te 0 ki te 59, ka 0.
\frac{0}{\sqrt{1-0}\sqrt{1-\left(0\times 77\right)^{2}}}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\frac{0}{\sqrt{1}\sqrt{1-\left(0\times 77\right)^{2}}}
Tangohia te 0 i te 1, ka 1.
\frac{0}{1\sqrt{1-\left(0\times 77\right)^{2}}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{0}{1\sqrt{1-0^{2}}}
Whakareatia te 0 ki te 77, ka 0.
\frac{0}{1\sqrt{1-0}}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\frac{0}{1\sqrt{1}}
Tangohia te 0 i te 1, ka 1.
\frac{0}{1\times 1}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{0}{1}
Whakareatia te 1 ki te 1, ka 1.
0
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}