Aromātai
\frac{369}{50}=7.38
Tauwehe
\frac{3 ^ {2} \cdot 41}{2 \cdot 5 ^ {2}} = 7\frac{19}{50} = 7.38
Tohaina
Kua tāruatia ki te papatopenga
\frac{0\times \frac{-1}{2}+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 0 ki te 4, ka 0.
\frac{0\left(-\frac{1}{2}\right)+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\frac{0+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 0 ki te -\frac{1}{2}, ka 0.
\frac{0+\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te \frac{5}{6} mā te pū o -2, kia riro ko \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tāpirihia te 0 ki te \frac{36}{25}, ka \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{\frac{1}{2}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te 2 mā te pū o -1, kia riro ko \frac{1}{2}.
\frac{\frac{36}{25}}{\left(1\times 2\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakawehe 1 ki te \frac{1}{2} mā te whakarea 1 ki te tau huripoki o \frac{1}{2}.
\frac{\frac{36}{25}}{2^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 1 ki te 2, ka 2.
\frac{\frac{36}{25}}{\frac{1}{2}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te 2 mā te pū o -1, kia riro ko \frac{1}{2}.
\frac{36}{25}\times 2+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakawehe \frac{36}{25} ki te \frac{1}{2} mā te whakarea \frac{36}{25} ki te tau huripoki o \frac{1}{2}.
\frac{72}{25}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te \frac{36}{25} ki te 2, ka \frac{72}{25}.
\frac{72}{25}+\frac{2\times 10^{-6}}{10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Me whakakore tahi te 567 i te taurunga me te tauraro.
\frac{72}{25}+2\times 10^{1}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{72}{25}+2\times 10\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
\frac{72}{25}+20\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 2 ki te 10, ka 20.
\frac{72}{25}+20\times 0^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 0 ki te 1, ka 0.
\frac{72}{25}+20\times 0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\frac{72}{25}+0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 20 ki te 0, ka 0.
\frac{72}{25}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tāpirihia te \frac{72}{25} ki te 0, ka \frac{72}{25}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tangohia te \frac{1}{2} i te 1, ka \frac{1}{2}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}-2}\right)^{-1}
Ka taea te hautanga \frac{-1}{4} te tuhi anō ko -\frac{1}{4} mā te tango i te tohu tōraro.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{9}{4}}\right)^{-1}
Tangohia te 2 i te -\frac{1}{4}, ka -\frac{9}{4}.
\frac{72}{25}-\left(\frac{1}{2}\left(-\frac{4}{9}\right)\right)^{-1}
Whakawehe \frac{1}{2} ki te -\frac{9}{4} mā te whakarea \frac{1}{2} ki te tau huripoki o -\frac{9}{4}.
\frac{72}{25}-\left(-\frac{2}{9}\right)^{-1}
Whakareatia te \frac{1}{2} ki te -\frac{4}{9}, ka -\frac{2}{9}.
\frac{72}{25}-\left(-\frac{9}{2}\right)
Tātaihia te -\frac{2}{9} mā te pū o -1, kia riro ko -\frac{9}{2}.
\frac{72}{25}+\frac{9}{2}
Ko te tauaro o -\frac{9}{2} ko \frac{9}{2}.
\frac{369}{50}
Tāpirihia te \frac{72}{25} ki te \frac{9}{2}, ka \frac{369}{50}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}