Aromātai
0
Tauwehe
0
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 0331-0302 }{ 4327-3953 } \times (4250-3953)+0302
Tohaina
Kua tāruatia ki te papatopenga
\frac{0-0\times 302}{4327-3953}\left(4250-3953\right)+0\times 302
Whakareatia te 0 ki te 331, ka 0.
\frac{0-0}{4327-3953}\left(4250-3953\right)+0\times 302
Whakareatia te 0 ki te 302, ka 0.
\frac{0}{4327-3953}\left(4250-3953\right)+0\times 302
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
\frac{0}{374}\left(4250-3953\right)+0\times 302
Tangohia te 3953 i te 4327, ka 374.
0\left(4250-3953\right)+0\times 302
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
0\times 297+0\times 302
Tangohia te 3953 i te 4250, ka 297.
0+0\times 302
Whakareatia te 0 ki te 297, ka 0.
0+0
Whakareatia te 0 ki te 302, ka 0.
0
Tāpirihia te 0 ki te 0, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}