Aromātai
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{0x+0}{0\times 2}-1<\frac{0\times 3x+0\times 2}{0\times 3}
Whakareatia te 0 ki te 1, ka 0. Whakareatia te 0 ki te 5, ka 0.
\frac{0+0}{0\times 2}-1<\frac{0\times 3x+0\times 2}{0\times 3}
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{0}{0\times 2}-1<\frac{0\times 3x+0\times 2}{0\times 3}
Tāpirihia te 0 ki te 0, ka 0.
\frac{0}{0}-1<\frac{0\times 3x+0\times 2}{0\times 3}
Whakareatia te 0 ki te 2, ka 0.
\frac{0}{0}-1<\frac{0x+0}{0\times 3}
Whakareatia te 0 ki te 3, ka 0. Whakareatia te 0 ki te 2, ka 0.
\frac{0}{0}-1<\frac{0+0}{0\times 3}
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{0}{0}-1<\frac{0}{0\times 3}
Tāpirihia te 0 ki te 0, ka 0.
\frac{0}{0}-1<\frac{0}{0}
Whakareatia te 0 ki te 3, ka 0.
\frac{0}{0}-1-\frac{0}{0}<0
Tangohia te \frac{0}{0} mai i ngā taha e rua.
-1<0
Tangohia te \frac{0}{0} i te \frac{0}{0}, ka 0.
\text{true}
Whakatauritea te -1 me te 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}