Aromātai
7
Tauwehe
7
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.4\left(-\frac{1}{2}\right)+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\frac{-\frac{1}{5}+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 0.4 ki te -\frac{1}{2}, ka -\frac{1}{5}.
\frac{-\frac{1}{5}+\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te \frac{5}{6} mā te pū o -2, kia riro ko \frac{36}{25}.
\frac{\frac{31}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tāpirihia te -\frac{1}{5} ki te \frac{36}{25}, ka \frac{31}{25}.
\frac{\frac{31}{25}}{\left(\frac{1}{\frac{1}{2}}\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te 2 mā te pū o -1, kia riro ko \frac{1}{2}.
\frac{\frac{31}{25}}{\left(1\times 2\right)^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakawehe 1 ki te \frac{1}{2} mā te whakarea 1 ki te tau huripoki o \frac{1}{2}.
\frac{\frac{31}{25}}{2^{-1}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 1 ki te 2, ka 2.
\frac{\frac{31}{25}}{\frac{1}{2}}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te 2 mā te pū o -1, kia riro ko \frac{1}{2}.
\frac{31}{25}\times 2+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakawehe \frac{31}{25} ki te \frac{1}{2} mā te whakarea \frac{31}{25} ki te tau huripoki o \frac{1}{2}.
\frac{62}{25}+\frac{1.134\times 10^{-6}}{5.67\times 10^{-7}}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te \frac{31}{25} ki te 2, ka \frac{62}{25}.
\frac{62}{25}+\frac{1.134\times 10^{1}}{5.67}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{62}{25}+\frac{1.134\times 10}{5.67}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
\frac{62}{25}+\frac{11.34}{5.67}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 1.134 ki te 10, ka 11.34.
\frac{62}{25}+\frac{1134}{567}\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakarohaina te \frac{11.34}{5.67} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{62}{25}+2\left(-0.1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakawehea te 1134 ki te 567, kia riro ko 2.
\frac{62}{25}+2\times 0.01-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tātaihia te -0.1 mā te pū o 2, kia riro ko 0.01.
\frac{62}{25}+0.02-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Whakareatia te 2 ki te 0.01, ka 0.02.
\frac{5}{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tāpirihia te \frac{62}{25} ki te 0.02, ka \frac{5}{2}.
\frac{5}{2}-\left(\frac{\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Tangohia te \frac{1}{2} i te 1, ka \frac{1}{2}.
\frac{5}{2}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}-2}\right)^{-1}
Ka taea te hautanga \frac{-1}{4} te tuhi anō ko -\frac{1}{4} mā te tango i te tohu tōraro.
\frac{5}{2}-\left(\frac{\frac{1}{2}}{-\frac{9}{4}}\right)^{-1}
Tangohia te 2 i te -\frac{1}{4}, ka -\frac{9}{4}.
\frac{5}{2}-\left(\frac{1}{2}\left(-\frac{4}{9}\right)\right)^{-1}
Whakawehe \frac{1}{2} ki te -\frac{9}{4} mā te whakarea \frac{1}{2} ki te tau huripoki o -\frac{9}{4}.
\frac{5}{2}-\left(-\frac{2}{9}\right)^{-1}
Whakareatia te \frac{1}{2} ki te -\frac{4}{9}, ka -\frac{2}{9}.
\frac{5}{2}-\left(-\frac{9}{2}\right)
Tātaihia te -\frac{2}{9} mā te pū o -1, kia riro ko -\frac{9}{2}.
\frac{5}{2}+\frac{9}{2}
Ko te tauaro o -\frac{9}{2} ko \frac{9}{2}.
7
Tāpirihia te \frac{5}{2} ki te \frac{9}{2}, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}