Aromātai
\frac{11051}{34000}\approx 0.325029412
Tauwehe
\frac{43 \cdot 257}{17 \cdot 2 ^ {4} \cdot 5 ^ {3}} = 0.3250294117647059
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 0.331-0.302 }{ 4327-3953 } \times (4250-3953)+0.302
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.029}{4327-3953}\left(4250-3953\right)+0.302
Tangohia te 0.302 i te 0.331, ka 0.029.
\frac{0.029}{374}\left(4250-3953\right)+0.302
Tangohia te 3953 i te 4327, ka 374.
\frac{29}{374000}\left(4250-3953\right)+0.302
Whakarohaina te \frac{0.029}{374} mā te whakarea i te taurunga me te tauraro ki te 1000.
\frac{29}{374000}\times 297+0.302
Tangohia te 3953 i te 4250, ka 297.
\frac{29\times 297}{374000}+0.302
Tuhia te \frac{29}{374000}\times 297 hei hautanga kotahi.
\frac{8613}{374000}+0.302
Whakareatia te 29 ki te 297, ka 8613.
\frac{783}{34000}+0.302
Whakahekea te hautanga \frac{8613}{374000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
\frac{783}{34000}+\frac{151}{500}
Me tahuri ki tau ā-ira 0.302 ki te hautau \frac{302}{1000}. Whakahekea te hautanga \frac{302}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{783}{34000}+\frac{10268}{34000}
Ko te maha noa iti rawa atu o 34000 me 500 ko 34000. Me tahuri \frac{783}{34000} me \frac{151}{500} ki te hautau me te tautūnga 34000.
\frac{783+10268}{34000}
Tā te mea he rite te tauraro o \frac{783}{34000} me \frac{10268}{34000}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11051}{34000}
Tāpirihia te 783 ki te 10268, ka 11051.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}