Whakaoti mō x
x = \frac{1115}{11} = 101\frac{4}{11} \approx 101.363636364
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+108\right)\times 0.2=\left(x+10\right)\times 0.376
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -108,-10 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(x+10\right)\left(x+108\right), arā, te tauraro pātahi he tino iti rawa te kitea o 20+2x,2\left(108+x\right).
0.2x+21.6=\left(x+10\right)\times 0.376
Whakamahia te āhuatanga tohatoha hei whakarea te x+108 ki te 0.2.
0.2x+21.6=0.376x+3.76
Whakamahia te āhuatanga tohatoha hei whakarea te x+10 ki te 0.376.
0.2x+21.6-0.376x=3.76
Tangohia te 0.376x mai i ngā taha e rua.
-0.176x+21.6=3.76
Pahekotia te 0.2x me -0.376x, ka -0.176x.
-0.176x=3.76-21.6
Tangohia te 21.6 mai i ngā taha e rua.
-0.176x=-17.84
Tangohia te 21.6 i te 3.76, ka -17.84.
x=\frac{-17.84}{-0.176}
Whakawehea ngā taha e rua ki te -0.176.
x=\frac{-17840}{-176}
Whakarohaina te \frac{-17.84}{-0.176} mā te whakarea i te taurunga me te tauraro ki te 1000.
x=\frac{1115}{11}
Whakahekea te hautanga \frac{-17840}{-176} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}