Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-7\left(2+\sqrt{15}\right)}{\left(2-\sqrt{15}\right)\left(2+\sqrt{15}\right)}
Whakangāwaritia te tauraro o \frac{-7}{2-\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{15}.
\frac{-7\left(2+\sqrt{15}\right)}{2^{2}-\left(\sqrt{15}\right)^{2}}
Whakaarohia te \left(2-\sqrt{15}\right)\left(2+\sqrt{15}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-7\left(2+\sqrt{15}\right)}{4-15}
Pūrua 2. Pūrua \sqrt{15}.
\frac{-7\left(2+\sqrt{15}\right)}{-11}
Tangohia te 15 i te 4, ka -11.
\frac{-14-7\sqrt{15}}{-11}
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te 2+\sqrt{15}.