Aromātai
-\frac{1}{x-1}
Kimi Pārōnaki e ai ki x
\frac{1}{\left(x-1\right)^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{-6}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
Tauwehea te x^{2}-4x+3.
\frac{-6}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-3\right)\left(x-1\right) me 3-x ko \left(x-3\right)\left(x-1\right). Whakareatia \frac{3}{3-x} ki te \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{-6-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Tā te mea he rite te tauraro o \frac{-6}{\left(x-3\right)\left(x-1\right)} me \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{-6+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Mahia ngā whakarea i roto o -6-3\left(-1\right)\left(x-1\right).
\frac{-9+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Whakakotahitia ngā kupu rite i -6+3x-3.
\frac{3\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-9+3x}{\left(x-3\right)\left(x-1\right)}.
\frac{3}{x-1}-\frac{4}{x-1}
Me whakakore tahi te x-3 i te taurunga me te tauraro.
\frac{-1}{x-1}
Tā te mea he rite te tauraro o \frac{3}{x-1} me \frac{4}{x-1}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 4 i te 3, ka -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}