Whakaoti mō y
y = -\frac{21}{5} = -4\frac{1}{5} = -4.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(-5-3y\right)=11-y
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
-10-6y=11-y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te -5-3y.
-10-6y+y=11
Me tāpiri te y ki ngā taha e rua.
-10-5y=11
Pahekotia te -6y me y, ka -5y.
-5y=11+10
Me tāpiri te 10 ki ngā taha e rua.
-5y=21
Tāpirihia te 11 ki te 10, ka 21.
y=\frac{21}{-5}
Whakawehea ngā taha e rua ki te -5.
y=-\frac{21}{5}
Ka taea te hautanga \frac{21}{-5} te tuhi anō ko -\frac{21}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}