Aromātai
\frac{10}{7}\approx 1.428571429
Tauwehe
\frac{2 \cdot 5}{7} = 1\frac{3}{7} = 1.4285714285714286
Tohaina
Kua tāruatia ki te papatopenga
\frac{-3\left(-4\right)+2\left(3-5\right)^{2}}{\left(4-8\right)^{2}+2\left(-1\right)^{5}}
Tangohia te 5 i te 1, ka -4.
\frac{12+2\left(3-5\right)^{2}}{\left(4-8\right)^{2}+2\left(-1\right)^{5}}
Whakareatia te -3 ki te -4, ka 12.
\frac{12+2\left(-2\right)^{2}}{\left(4-8\right)^{2}+2\left(-1\right)^{5}}
Tangohia te 5 i te 3, ka -2.
\frac{12+2\times 4}{\left(4-8\right)^{2}+2\left(-1\right)^{5}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{12+8}{\left(4-8\right)^{2}+2\left(-1\right)^{5}}
Whakareatia te 2 ki te 4, ka 8.
\frac{20}{\left(4-8\right)^{2}+2\left(-1\right)^{5}}
Tāpirihia te 12 ki te 8, ka 20.
\frac{20}{\left(-4\right)^{2}+2\left(-1\right)^{5}}
Tangohia te 8 i te 4, ka -4.
\frac{20}{16+2\left(-1\right)^{5}}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
\frac{20}{16+2\left(-1\right)}
Tātaihia te -1 mā te pū o 5, kia riro ko -1.
\frac{20}{16-2}
Whakareatia te 2 ki te -1, ka -2.
\frac{20}{14}
Tangohia te 2 i te 16, ka 14.
\frac{10}{7}
Whakahekea te hautanga \frac{20}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}