Aromātai
-\frac{6\sqrt{70}}{5}\approx -10.039920318
Tohaina
Kua tāruatia ki te papatopenga
\frac{-2\sqrt{21}\times 6\sqrt{2}}{\sqrt{60}}
Tauwehea te 72=6^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 2} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{2}. Tuhia te pūtakerua o te 6^{2}.
\frac{-12\sqrt{21}\sqrt{2}}{\sqrt{60}}
Whakareatia te -2 ki te 6, ka -12.
\frac{-12\sqrt{42}}{\sqrt{60}}
Hei whakarea \sqrt{21} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-12\sqrt{42}}{2\sqrt{15}}
Tauwehea te 60=2^{2}\times 15. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 15} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{15}. Tuhia te pūtakerua o te 2^{2}.
\frac{-6\sqrt{42}}{\sqrt{15}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{-6\sqrt{42}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Whakangāwaritia te tauraro o \frac{-6\sqrt{42}}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
\frac{-6\sqrt{42}\sqrt{15}}{15}
Ko te pūrua o \sqrt{15} ko 15.
\frac{-6\sqrt{630}}{15}
Hei whakarea \sqrt{42} me \sqrt{15}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-6\times 3\sqrt{70}}{15}
Tauwehea te 630=3^{2}\times 70. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 70} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{70}. Tuhia te pūtakerua o te 3^{2}.
\frac{-18\sqrt{70}}{15}
Whakareatia te -6 ki te 3, ka -18.
-\frac{6}{5}\sqrt{70}
Whakawehea te -18\sqrt{70} ki te 15, kia riro ko -\frac{6}{5}\sqrt{70}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}