Whakaoti mō x
x=\frac{-y-7}{3}
Whakaoti mō y
y=-3x-7
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2\times 3x-2y=14
Whakareatia ngā taha e rua o te whārite ki te 2.
-6x-2y=14
Whakareatia te -2 ki te 3, ka -6.
-6x=14+2y
Me tāpiri te 2y ki ngā taha e rua.
-6x=2y+14
He hanga arowhānui tō te whārite.
\frac{-6x}{-6}=\frac{2y+14}{-6}
Whakawehea ngā taha e rua ki te -6.
x=\frac{2y+14}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x=\frac{-y-7}{3}
Whakawehe 14+2y ki te -6.
-2\times 3x-2y=14
Whakareatia ngā taha e rua o te whārite ki te 2.
-6x-2y=14
Whakareatia te -2 ki te 3, ka -6.
-2y=14+6x
Me tāpiri te 6x ki ngā taha e rua.
-2y=6x+14
He hanga arowhānui tō te whārite.
\frac{-2y}{-2}=\frac{6x+14}{-2}
Whakawehea ngā taha e rua ki te -2.
y=\frac{6x+14}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
y=-3x-7
Whakawehe 14+6x ki te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}