Aromātai
-\sqrt{35}-6\approx -11.916079783
Tauwehe
-\sqrt{35}-6
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ -12- \sqrt{ { 12 }^{ 2 } -4-02 \cdot 7 } }{ 2-02 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{-12-\sqrt{144-4-0\times 2\times 7}}{2-0\times 2}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
\frac{-12-\sqrt{140-0\times 2\times 7}}{2-0\times 2}
Tangohia te 4 i te 144, ka 140.
\frac{-12-\sqrt{140-0\times 7}}{2-0\times 2}
Whakareatia te 0 ki te 2, ka 0.
\frac{-12-\sqrt{140-0}}{2-0\times 2}
Whakareatia te 0 ki te 7, ka 0.
\frac{-12-\sqrt{140}}{2-0\times 2}
Tangohia te 0 i te 140, ka 140.
\frac{-12-2\sqrt{35}}{2-0\times 2}
Tauwehea te 140=2^{2}\times 35. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 35} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{35}. Tuhia te pūtakerua o te 2^{2}.
\frac{-12-2\sqrt{35}}{2-0}
Whakareatia te 0 ki te 2, ka 0.
\frac{-12-2\sqrt{35}}{2}
Tangohia te 0 i te 2, ka 2.
-6-\sqrt{35}
Whakawehea ia wā o -12-2\sqrt{35} ki te 2, kia riro ko -6-\sqrt{35}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}