Aromātai
-2\sqrt{17}-6\approx -14.246211251
Tauwehe
2 {(-\sqrt{17} - 3)} = -14.246211251
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ -12+- \sqrt{ { 12 }^{ 2 } -4(1)(-32) } }{ 2(1) }
Tohaina
Kua tāruatia ki te papatopenga
\frac{-12-\sqrt{144-4\times 1\left(-32\right)}}{2\times 1}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
\frac{-12-\sqrt{144-4\left(-32\right)}}{2\times 1}
Whakareatia te 4 ki te 1, ka 4.
\frac{-12-\sqrt{144-\left(-128\right)}}{2\times 1}
Whakareatia te 4 ki te -32, ka -128.
\frac{-12-\sqrt{144+128}}{2\times 1}
Ko te tauaro o -128 ko 128.
\frac{-12-\sqrt{272}}{2\times 1}
Tāpirihia te 144 ki te 128, ka 272.
\frac{-12-4\sqrt{17}}{2\times 1}
Tauwehea te 272=4^{2}\times 17. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 17} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{17}. Tuhia te pūtakerua o te 4^{2}.
\frac{-12-4\sqrt{17}}{2}
Whakareatia te 2 ki te 1, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}