Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-108x^{6}\right)^{1}\times \frac{1}{-12x^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\left(-108\right)^{1}\left(x^{6}\right)^{1}\times \frac{1}{-12}\times \frac{1}{x^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
\left(-108\right)^{1}\times \frac{1}{-12}\left(x^{6}\right)^{1}\times \frac{1}{x^{2}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
\left(-108\right)^{1}\times \frac{1}{-12}x^{6}x^{2\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\left(-108\right)^{1}\times \frac{1}{-12}x^{6}x^{-2}
Whakareatia 2 ki te -1.
\left(-108\right)^{1}\times \frac{1}{-12}x^{6-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\left(-108\right)^{1}\times \frac{1}{-12}x^{4}
Tāpirihia ngā taupū 6 me -2.
-108\times \frac{1}{-12}x^{4}
Hīkina te -108 ki te pū 1.
-108\left(-\frac{1}{12}\right)x^{4}
Hīkina te -12 ki te pū -1.
9x^{4}
Whakareatia -108 ki te -\frac{1}{12}.
\frac{\left(-108\right)^{1}x^{6}}{\left(-12\right)^{1}x^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{\left(-108\right)^{1}x^{6-2}}{\left(-12\right)^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(-108\right)^{1}x^{4}}{\left(-12\right)^{1}}
Tango 2 mai i 6.
9x^{4}
Whakawehe -108 ki te -12.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{108}{-12}\right)x^{6-2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(9x^{4})
Mahia ngā tātaitanga.
4\times 9x^{4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
36x^{3}
Mahia ngā tātaitanga.