Aromātai
\frac{-20\sqrt{2}-10}{21}\approx -1.823060536
Tauwehe
\frac{10 {(-2 \sqrt{2} - 1)}}{21} = -1.823060535593424
Tohaina
Kua tāruatia ki te papatopenga
\frac{-1-\sqrt{-4-4\times 1\left(-3\right)}}{2.1}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{-1-\sqrt{-4-4\left(-3\right)}}{2.1}
Whakareatia te 4 ki te 1, ka 4.
\frac{-1-\sqrt{-4-\left(-12\right)}}{2.1}
Whakareatia te 4 ki te -3, ka -12.
\frac{-1-\sqrt{-4+12}}{2.1}
Ko te tauaro o -12 ko 12.
\frac{-1-\sqrt{8}}{2.1}
Tāpirihia te -4 ki te 12, ka 8.
\frac{-1-2\sqrt{2}}{2.1}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}