Aromātai
\frac{2\left(-y^{2}+2y-2\right)}{\left(y\left(2-y\right)\right)^{2}}
Whakaroha
-\frac{2\left(y^{2}-2y+2\right)}{\left(y\left(2-y\right)\right)^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}}-\frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(2-y\right)^{2} me y^{2} ko y^{2}\left(-y+2\right)^{2}. Whakareatia \frac{-1}{\left(2-y\right)^{2}} ki te \frac{y^{2}}{y^{2}}. Whakareatia \frac{1}{y^{2}} ki te \frac{\left(-y+2\right)^{2}}{\left(-y+2\right)^{2}}.
\frac{-y^{2}-\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Tā te mea he rite te tauraro o \frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}} me \frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{-y^{2}-y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Mahia ngā whakarea i roto o -y^{2}-\left(-y+2\right)^{2}.
\frac{-2y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Whakakotahitia ngā kupu rite i -y^{2}-y^{2}+4y-4.
\frac{-2y^{2}+4y-4}{y^{4}-4y^{3}+4y^{2}}
Whakarohaina te y^{2}\left(-y+2\right)^{2}.
\frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}}-\frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(2-y\right)^{2} me y^{2} ko y^{2}\left(-y+2\right)^{2}. Whakareatia \frac{-1}{\left(2-y\right)^{2}} ki te \frac{y^{2}}{y^{2}}. Whakareatia \frac{1}{y^{2}} ki te \frac{\left(-y+2\right)^{2}}{\left(-y+2\right)^{2}}.
\frac{-y^{2}-\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}
Tā te mea he rite te tauraro o \frac{-y^{2}}{y^{2}\left(-y+2\right)^{2}} me \frac{\left(-y+2\right)^{2}}{y^{2}\left(-y+2\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{-y^{2}-y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Mahia ngā whakarea i roto o -y^{2}-\left(-y+2\right)^{2}.
\frac{-2y^{2}+4y-4}{y^{2}\left(-y+2\right)^{2}}
Whakakotahitia ngā kupu rite i -y^{2}-y^{2}+4y-4.
\frac{-2y^{2}+4y-4}{y^{4}-4y^{3}+4y^{2}}
Whakarohaina te y^{2}\left(-y+2\right)^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}