Aromātai
-48
Tauwehe
-48
Tohaina
Kua tāruatia ki te papatopenga
\frac{14-\sqrt{\left(-14\right)^{2}}-4\times 2\times 24}{2\times 2}
Ko te tauaro o -14 ko 14.
\frac{14-\sqrt{196}-4\times 2\times 24}{2\times 2}
Tātaihia te -14 mā te pū o 2, kia riro ko 196.
\frac{14-14-4\times 2\times 24}{2\times 2}
Tātaitia te pūtakerua o 196 kia tae ki 14.
\frac{0-4\times 2\times 24}{2\times 2}
Tangohia te 14 i te 14, ka 0.
\frac{0-8\times 24}{2\times 2}
Whakareatia te 4 ki te 2, ka 8.
\frac{0-192}{2\times 2}
Whakareatia te 8 ki te 24, ka 192.
\frac{-192}{2\times 2}
Tangohia te 192 i te 0, ka -192.
\frac{-192}{4}
Whakareatia te 2 ki te 2, ka 4.
-48
Whakawehea te -192 ki te 4, kia riro ko -48.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}