Aromātai
\frac{\sqrt{37}+7}{2}\approx 6.541381265
Tauwehe
\frac{\sqrt{37} + 7}{2} = 6.541381265149109
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ -(-14)+ \sqrt{ { 14 }^{ 2 } -4(2)(6) } }{ 2(2) }
Tohaina
Kua tāruatia ki te papatopenga
\frac{14+\sqrt{14^{2}-4\times 2\times 6}}{2\times 2}
Ko te tauaro o -14 ko 14.
\frac{14+\sqrt{196-4\times 2\times 6}}{2\times 2}
Tātaihia te 14 mā te pū o 2, kia riro ko 196.
\frac{14+\sqrt{196-8\times 6}}{2\times 2}
Whakareatia te 4 ki te 2, ka 8.
\frac{14+\sqrt{196-48}}{2\times 2}
Whakareatia te 8 ki te 6, ka 48.
\frac{14+\sqrt{148}}{2\times 2}
Tangohia te 48 i te 196, ka 148.
\frac{14+2\sqrt{37}}{2\times 2}
Tauwehea te 148=2^{2}\times 37. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 37} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{37}. Tuhia te pūtakerua o te 2^{2}.
\frac{14+2\sqrt{37}}{4}
Whakareatia te 2 ki te 2, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}