Whakaoti mō t
t=-2\sqrt{69}i+2\approx 2-16.613247726i
t=2+2\sqrt{69}i\approx 2+16.613247726i
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
\frac{ - { t }^{ 2 } +4t-280 }{ { t }^{ 2 } -4t } = 0
Tohaina
Kua tāruatia ki te papatopenga
-t^{2}+4t-280=0
Tē taea kia ōrite te tāupe t ki tētahi o ngā uara 0,4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te t\left(t-4\right).
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 4 mō b, me -280 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
Pūrua 4.
t=\frac{-4±\sqrt{16+4\left(-280\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
t=\frac{-4±\sqrt{16-1120}}{2\left(-1\right)}
Whakareatia 4 ki te -280.
t=\frac{-4±\sqrt{-1104}}{2\left(-1\right)}
Tāpiri 16 ki te -1120.
t=\frac{-4±4\sqrt{69}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -1104.
t=\frac{-4±4\sqrt{69}i}{-2}
Whakareatia 2 ki te -1.
t=\frac{-4+4\sqrt{69}i}{-2}
Nā, me whakaoti te whārite t=\frac{-4±4\sqrt{69}i}{-2} ina he tāpiri te ±. Tāpiri -4 ki te 4i\sqrt{69}.
t=-2\sqrt{69}i+2
Whakawehe -4+4i\sqrt{69} ki te -2.
t=\frac{-4\sqrt{69}i-4}{-2}
Nā, me whakaoti te whārite t=\frac{-4±4\sqrt{69}i}{-2} ina he tango te ±. Tango 4i\sqrt{69} mai i -4.
t=2+2\sqrt{69}i
Whakawehe -4-4i\sqrt{69} ki te -2.
t=-2\sqrt{69}i+2 t=2+2\sqrt{69}i
Kua oti te whārite te whakatau.
-t^{2}+4t-280=0
Tē taea kia ōrite te tāupe t ki tētahi o ngā uara 0,4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te t\left(t-4\right).
-t^{2}+4t=280
Me tāpiri te 280 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-t^{2}+4t}{-1}=\frac{280}{-1}
Whakawehea ngā taha e rua ki te -1.
t^{2}+\frac{4}{-1}t=\frac{280}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
t^{2}-4t=\frac{280}{-1}
Whakawehe 4 ki te -1.
t^{2}-4t=-280
Whakawehe 280 ki te -1.
t^{2}-4t+\left(-2\right)^{2}=-280+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-4t+4=-280+4
Pūrua -2.
t^{2}-4t+4=-276
Tāpiri -280 ki te 4.
\left(t-2\right)^{2}=-276
Tauwehea t^{2}-4t+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{-276}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-2=2\sqrt{69}i t-2=-2\sqrt{69}i
Whakarūnātia.
t=2+2\sqrt{69}i t=-2\sqrt{69}i+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}