Aromātai
-\frac{129}{7}\approx -18.428571429
Tauwehe
-\frac{129}{7} = -18\frac{3}{7} = -18.428571428571427
Tohaina
Kua tāruatia ki te papatopenga
\frac{44+114+220+325+42-5\times 4\times 5}{2^{2}+3^{2}+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Whakareatia te 2 ki te 22, ka 44. Whakareatia te 3 ki te 38, ka 114. Whakareatia te 4 ki te 55, ka 220. Whakareatia te 5 ki te 65, ka 325. Whakareatia te 6 ki te 7, ka 42.
\frac{158+220+325+42-5\times 4\times 5}{2^{2}+3^{2}+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Tāpirihia te 44 ki te 114, ka 158.
\frac{378+325+42-5\times 4\times 5}{2^{2}+3^{2}+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Tāpirihia te 158 ki te 220, ka 378.
\frac{703+42-5\times 4\times 5}{2^{2}+3^{2}+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Tāpirihia te 378 ki te 325, ka 703.
\frac{745-5\times 4\times 5}{2^{2}+3^{2}+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Tāpirihia te 703 ki te 42, ka 745.
\frac{745-20\times 5}{2^{2}+3^{2}+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Whakareatia te 5 ki te 4, ka 20.
\frac{745-100}{2^{2}+3^{2}+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Whakareatia te 20 ki te 5, ka 100.
\frac{645}{2^{2}+3^{2}+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Tangohia te 100 i te 745, ka 645.
\frac{645}{4+3^{2}+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{645}{4+9+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{645}{13+4^{2}+5^{2}+6^{2}-5\times 5\times 5}
Tāpirihia te 4 ki te 9, ka 13.
\frac{645}{13+16+5^{2}+6^{2}-5\times 5\times 5}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{645}{29+5^{2}+6^{2}-5\times 5\times 5}
Tāpirihia te 13 ki te 16, ka 29.
\frac{645}{29+25+6^{2}-5\times 5\times 5}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{645}{54+6^{2}-5\times 5\times 5}
Tāpirihia te 29 ki te 25, ka 54.
\frac{645}{54+36-5\times 5\times 5}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{645}{90-5\times 5\times 5}
Tāpirihia te 54 ki te 36, ka 90.
\frac{645}{90-25\times 5}
Whakareatia te 5 ki te 5, ka 25.
\frac{645}{90-125}
Whakareatia te 25 ki te 5, ka 125.
\frac{645}{-35}
Tangohia te 125 i te 90, ka -35.
-\frac{129}{7}
Whakahekea te hautanga \frac{645}{-35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}