Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-9=2\left(x+3\right)
Tē taea kia ōrite te tāupe x ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x+3\right).
x^{2}-9=2x+6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
x^{2}-9-2x=6
Tangohia te 2x mai i ngā taha e rua.
x^{2}-9-2x-6=0
Tangohia te 6 mai i ngā taha e rua.
x^{2}-15-2x=0
Tangohia te 6 i te -9, ka -15.
x^{2}-2x-15=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-2 ab=-15
Hei whakaoti i te whārite, whakatauwehea te x^{2}-2x-15 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-15 3,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
1-15=-14 3-5=-2
Tātaihia te tapeke mō ia takirua.
a=-5 b=3
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(x-5\right)\left(x+3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=5 x=-3
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+3=0.
x=5
Tē taea kia ōrite te tāupe x ki -3.
x^{2}-9=2\left(x+3\right)
Tē taea kia ōrite te tāupe x ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x+3\right).
x^{2}-9=2x+6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
x^{2}-9-2x=6
Tangohia te 2x mai i ngā taha e rua.
x^{2}-9-2x-6=0
Tangohia te 6 mai i ngā taha e rua.
x^{2}-15-2x=0
Tangohia te 6 i te -9, ka -15.
x^{2}-2x-15=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-2 ab=1\left(-15\right)=-15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-15 3,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
1-15=-14 3-5=-2
Tātaihia te tapeke mō ia takirua.
a=-5 b=3
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(x^{2}-5x\right)+\left(3x-15\right)
Tuhia anō te x^{2}-2x-15 hei \left(x^{2}-5x\right)+\left(3x-15\right).
x\left(x-5\right)+3\left(x-5\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-5\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-3
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+3=0.
x=5
Tē taea kia ōrite te tāupe x ki -3.
x^{2}-9=2\left(x+3\right)
Tē taea kia ōrite te tāupe x ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x+3\right).
x^{2}-9=2x+6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
x^{2}-9-2x=6
Tangohia te 2x mai i ngā taha e rua.
x^{2}-9-2x-6=0
Tangohia te 6 mai i ngā taha e rua.
x^{2}-15-2x=0
Tangohia te 6 i te -9, ka -15.
x^{2}-2x-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-15\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-15\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+60}}{2}
Whakareatia -4 ki te -15.
x=\frac{-\left(-2\right)±\sqrt{64}}{2}
Tāpiri 4 ki te 60.
x=\frac{-\left(-2\right)±8}{2}
Tuhia te pūtakerua o te 64.
x=\frac{2±8}{2}
Ko te tauaro o -2 ko 2.
x=\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{2±8}{2} ina he tāpiri te ±. Tāpiri 2 ki te 8.
x=5
Whakawehe 10 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{2±8}{2} ina he tango te ±. Tango 8 mai i 2.
x=-3
Whakawehe -6 ki te 2.
x=5 x=-3
Kua oti te whārite te whakatau.
x=5
Tē taea kia ōrite te tāupe x ki -3.
x^{2}-9=2\left(x+3\right)
Tē taea kia ōrite te tāupe x ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x+3\right).
x^{2}-9=2x+6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
x^{2}-9-2x=6
Tangohia te 2x mai i ngā taha e rua.
x^{2}-2x=6+9
Me tāpiri te 9 ki ngā taha e rua.
x^{2}-2x=15
Tāpirihia te 6 ki te 9, ka 15.
x^{2}-2x+1=15+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=16
Tāpiri 15 ki te 1.
\left(x-1\right)^{2}=16
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=4 x-1=-4
Whakarūnātia.
x=5 x=-3
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=5
Tē taea kia ōrite te tāupe x ki -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}