Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-5x+6=2\left(x-4\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-3\right).
x^{2}-5x+6=\left(2x-8\right)\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-4.
x^{2}-5x+6=2x^{2}-14x+24
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-8 ki te x-3 ka whakakotahi i ngā kupu rite.
x^{2}-5x+6-2x^{2}=-14x+24
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-5x+6=-14x+24
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-5x+6+14x=24
Me tāpiri te 14x ki ngā taha e rua.
-x^{2}+9x+6=24
Pahekotia te -5x me 14x, ka 9x.
-x^{2}+9x+6-24=0
Tangohia te 24 mai i ngā taha e rua.
-x^{2}+9x-18=0
Tangohia te 24 i te 6, ka -18.
a+b=9 ab=-\left(-18\right)=18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,18 2,9 3,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
1+18=19 2+9=11 3+6=9
Tātaihia te tapeke mō ia takirua.
a=6 b=3
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(-x^{2}+6x\right)+\left(3x-18\right)
Tuhia anō te -x^{2}+9x-18 hei \left(-x^{2}+6x\right)+\left(3x-18\right).
-x\left(x-6\right)+3\left(x-6\right)
Tauwehea te -x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-6\right)\left(-x+3\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=3
Hei kimi otinga whārite, me whakaoti te x-6=0 me te -x+3=0.
x=6
Tē taea kia ōrite te tāupe x ki 3.
x^{2}-5x+6=2\left(x-4\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-3\right).
x^{2}-5x+6=\left(2x-8\right)\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-4.
x^{2}-5x+6=2x^{2}-14x+24
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-8 ki te x-3 ka whakakotahi i ngā kupu rite.
x^{2}-5x+6-2x^{2}=-14x+24
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-5x+6=-14x+24
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-5x+6+14x=24
Me tāpiri te 14x ki ngā taha e rua.
-x^{2}+9x+6=24
Pahekotia te -5x me 14x, ka 9x.
-x^{2}+9x+6-24=0
Tangohia te 24 mai i ngā taha e rua.
-x^{2}+9x-18=0
Tangohia te 24 i te 6, ka -18.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 9 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
Pūrua 9.
x=\frac{-9±\sqrt{81+4\left(-18\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-9±\sqrt{81-72}}{2\left(-1\right)}
Whakareatia 4 ki te -18.
x=\frac{-9±\sqrt{9}}{2\left(-1\right)}
Tāpiri 81 ki te -72.
x=\frac{-9±3}{2\left(-1\right)}
Tuhia te pūtakerua o te 9.
x=\frac{-9±3}{-2}
Whakareatia 2 ki te -1.
x=-\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{-9±3}{-2} ina he tāpiri te ±. Tāpiri -9 ki te 3.
x=3
Whakawehe -6 ki te -2.
x=-\frac{12}{-2}
Nā, me whakaoti te whārite x=\frac{-9±3}{-2} ina he tango te ±. Tango 3 mai i -9.
x=6
Whakawehe -12 ki te -2.
x=3 x=6
Kua oti te whārite te whakatau.
x=6
Tē taea kia ōrite te tāupe x ki 3.
x^{2}-5x+6=2\left(x-4\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-3\right).
x^{2}-5x+6=\left(2x-8\right)\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-4.
x^{2}-5x+6=2x^{2}-14x+24
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-8 ki te x-3 ka whakakotahi i ngā kupu rite.
x^{2}-5x+6-2x^{2}=-14x+24
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-5x+6=-14x+24
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-5x+6+14x=24
Me tāpiri te 14x ki ngā taha e rua.
-x^{2}+9x+6=24
Pahekotia te -5x me 14x, ka 9x.
-x^{2}+9x=24-6
Tangohia te 6 mai i ngā taha e rua.
-x^{2}+9x=18
Tangohia te 6 i te 24, ka 18.
\frac{-x^{2}+9x}{-1}=\frac{18}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{9}{-1}x=\frac{18}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-9x=\frac{18}{-1}
Whakawehe 9 ki te -1.
x^{2}-9x=-18
Whakawehe 18 ki te -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-18+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-9x+\frac{81}{4}=-18+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-9x+\frac{81}{4}=\frac{9}{4}
Tāpiri -18 ki te \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{2}=\frac{3}{2} x-\frac{9}{2}=-\frac{3}{2}
Whakarūnātia.
x=6 x=3
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
x=6
Tē taea kia ōrite te tāupe x ki 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}