Aromātai
x
Kimi Pārōnaki e ai ki x
1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{x^{2}+x-\left(\left(x-1\right)^{2}+x-1\right)}{2}
Tā te mea he rite te tauraro o \frac{x^{2}+x}{2} me \frac{\left(x-1\right)^{2}+x-1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}+x-x^{2}+2x-1-x+1}{2}
Mahia ngā whakarea i roto o x^{2}+x-\left(\left(x-1\right)^{2}+x-1\right).
\frac{2x}{2}
Whakakotahitia ngā kupu rite i x^{2}+x-x^{2}+2x-1-x+1.
x
Me whakakore te 2 me te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x-\left(\left(x-1\right)^{2}+x-1\right)}{2})
Tā te mea he rite te tauraro o \frac{x^{2}+x}{2} me \frac{\left(x-1\right)^{2}+x-1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x-x^{2}+2x-1-x+1}{2})
Mahia ngā whakarea i roto o x^{2}+x-\left(\left(x-1\right)^{2}+x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{2})
Whakakotahitia ngā kupu rite i x^{2}+x-x^{2}+2x-1-x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Me whakakore te 2 me te 2.
x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}