Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x^{2}+x-\left(\left(x-1\right)^{2}+x-1\right)}{2}
Tā te mea he rite te tauraro o \frac{x^{2}+x}{2} me \frac{\left(x-1\right)^{2}+x-1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}+x-x^{2}+2x-1-x+1}{2}
Mahia ngā whakarea i roto o x^{2}+x-\left(\left(x-1\right)^{2}+x-1\right).
\frac{2x}{2}
Whakakotahitia ngā kupu rite i x^{2}+x-x^{2}+2x-1-x+1.
x
Me whakakore te 2 me te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x-\left(\left(x-1\right)^{2}+x-1\right)}{2})
Tā te mea he rite te tauraro o \frac{x^{2}+x}{2} me \frac{\left(x-1\right)^{2}+x-1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x-x^{2}+2x-1-x+1}{2})
Mahia ngā whakarea i roto o x^{2}+x-\left(\left(x-1\right)^{2}+x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{2})
Whakakotahitia ngā kupu rite i x^{2}+x-x^{2}+2x-1-x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Me whakakore te 2 me te 2.
x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.