Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6-\left(x-5\right)x=2x
Tē taea kia ōrite te tāupe x ki 5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(x-5\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x-10,2,x-5.
x^{2}+6-\left(x^{2}-5x\right)=2x
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te x.
x^{2}+6-x^{2}+5x=2x
Hei kimi i te tauaro o x^{2}-5x, kimihia te tauaro o ia taurangi.
6+5x=2x
Pahekotia te x^{2} me -x^{2}, ka 0.
6+5x-2x=0
Tangohia te 2x mai i ngā taha e rua.
6+3x=0
Pahekotia te 5x me -2x, ka 3x.
3x=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-6}{3}
Whakawehea ngā taha e rua ki te 3.
x=-2
Whakawehea te -6 ki te 3, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}