Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(y+2\right)x^{2}=\left(y-2\right)\left(4^{2}-x\right)
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(y-2\right)\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o y-2,y+2.
yx^{2}+2x^{2}=\left(y-2\right)\left(4^{2}-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te y+2 ki te x^{2}.
yx^{2}+2x^{2}=\left(y-2\right)\left(16-x\right)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
yx^{2}+2x^{2}=16y-yx-32+2x
Whakamahia te āhuatanga tohatoha hei whakarea te y-2 ki te 16-x.
yx^{2}+2x^{2}-16y=-yx-32+2x
Tangohia te 16y mai i ngā taha e rua.
yx^{2}+2x^{2}-16y+yx=-32+2x
Me tāpiri te yx ki ngā taha e rua.
yx^{2}-16y+yx=-32+2x-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua.
\left(x^{2}-16+x\right)y=-32+2x-2x^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(x^{2}+x-16\right)y=-2x^{2}+2x-32
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}+x-16\right)y}{x^{2}+x-16}=\frac{-2x^{2}+2x-32}{x^{2}+x-16}
Whakawehea ngā taha e rua ki te x^{2}-16+x.
y=\frac{-2x^{2}+2x-32}{x^{2}+x-16}
Mā te whakawehe ki te x^{2}-16+x ka wetekia te whakareanga ki te x^{2}-16+x.
y=\frac{2\left(-x^{2}+x-16\right)}{x^{2}+x-16}
Whakawehe -32+2x-2x^{2} ki te x^{2}-16+x.
y=\frac{2\left(-x^{2}+x-16\right)}{x^{2}+x-16}\text{, }y\neq -2\text{ and }y\neq 2
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -2,2.