Whakaoti mō y
y=-\frac{2\left(x^{2}-x+16\right)}{x^{2}+x-16}
x\neq 0\text{ and }x\neq \frac{\sqrt{65}-1}{2}\text{ and }x\neq \frac{-\sqrt{65}-1}{2}\text{ and }x\neq 16
Whakaoti mō x (complex solution)
x=\frac{\sqrt{\left(y-2\right)\left(65y+126\right)}-y+2}{2\left(y+2\right)}
x=\frac{-\sqrt{\left(y-2\right)\left(65y+126\right)}-y+2}{2\left(y+2\right)}\text{, }y\neq 2\text{ and }y\neq -2
Whakaoti mō x
x=\frac{\sqrt{\left(y-2\right)\left(65y+126\right)}-y+2}{2\left(y+2\right)}
x=\frac{-\sqrt{\left(y-2\right)\left(65y+126\right)}-y+2}{2\left(y+2\right)}\text{, }y>2\text{ or }\left(y\neq -2\text{ and }y\leq -\frac{126}{65}\right)
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac{ { x }^{ 2 } }{ y-2 } = \frac{ { 4 }^{ 2 } -x }{ y+2 }
Tohaina
Kua tāruatia ki te papatopenga
\left(y+2\right)x^{2}=\left(y-2\right)\left(4^{2}-x\right)
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(y-2\right)\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o y-2,y+2.
yx^{2}+2x^{2}=\left(y-2\right)\left(4^{2}-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te y+2 ki te x^{2}.
yx^{2}+2x^{2}=\left(y-2\right)\left(16-x\right)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
yx^{2}+2x^{2}=16y-yx-32+2x
Whakamahia te āhuatanga tohatoha hei whakarea te y-2 ki te 16-x.
yx^{2}+2x^{2}-16y=-yx-32+2x
Tangohia te 16y mai i ngā taha e rua.
yx^{2}+2x^{2}-16y+yx=-32+2x
Me tāpiri te yx ki ngā taha e rua.
yx^{2}-16y+yx=-32+2x-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua.
\left(x^{2}-16+x\right)y=-32+2x-2x^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(x^{2}+x-16\right)y=-2x^{2}+2x-32
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}+x-16\right)y}{x^{2}+x-16}=\frac{-2x^{2}+2x-32}{x^{2}+x-16}
Whakawehea ngā taha e rua ki te x^{2}-16+x.
y=\frac{-2x^{2}+2x-32}{x^{2}+x-16}
Mā te whakawehe ki te x^{2}-16+x ka wetekia te whakareanga ki te x^{2}-16+x.
y=\frac{2\left(-x^{2}+x-16\right)}{x^{2}+x-16}
Whakawehe -32+2x-2x^{2} ki te x^{2}-16+x.
y=\frac{2\left(-x^{2}+x-16\right)}{x^{2}+x-16}\text{, }y\neq -2\text{ and }y\neq 2
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -2,2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}