Whakaoti mō x
x = \frac{\sqrt{160221897609} - 10397}{25000} \approx 15.595211036
x=\frac{-\sqrt{160221897609}-10397}{25000}\approx -16.426971036
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=83176\times 10^{-5}\left(-x+308\right)
Tē taea kia ōrite te tāupe x ki 308 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -x+308.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
Whakareatia te 83176 ki te \frac{1}{100000}, ka \frac{10397}{12500}.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{10397}{12500} ki te -x+308.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
Me tāpiri te \frac{10397}{12500}x ki ngā taha e rua.
x^{2}+\frac{10397}{12500}x-\frac{800569}{3125}=0
Tangohia te \frac{800569}{3125} mai i ngā taha e rua.
x=\frac{-\frac{10397}{12500}±\sqrt{\left(\frac{10397}{12500}\right)^{2}-4\left(-\frac{800569}{3125}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, \frac{10397}{12500} mō b, me -\frac{800569}{3125} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}-4\left(-\frac{800569}{3125}\right)}}{2}
Pūruatia \frac{10397}{12500} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{108097609}{156250000}+\frac{3202276}{3125}}}{2}
Whakareatia -4 ki te -\frac{800569}{3125}.
x=\frac{-\frac{10397}{12500}±\sqrt{\frac{160221897609}{156250000}}}{2}
Tāpiri \frac{108097609}{156250000} ki te \frac{3202276}{3125} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2}
Tuhia te pūtakerua o te \frac{160221897609}{156250000}.
x=\frac{\sqrt{160221897609}-10397}{2\times 12500}
Nā, me whakaoti te whārite x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} ina he tāpiri te ±. Tāpiri -\frac{10397}{12500} ki te \frac{\sqrt{160221897609}}{12500}.
x=\frac{\sqrt{160221897609}-10397}{25000}
Whakawehe \frac{-10397+\sqrt{160221897609}}{12500} ki te 2.
x=\frac{-\sqrt{160221897609}-10397}{2\times 12500}
Nā, me whakaoti te whārite x=\frac{-\frac{10397}{12500}±\frac{\sqrt{160221897609}}{12500}}{2} ina he tango te ±. Tango \frac{\sqrt{160221897609}}{12500} mai i -\frac{10397}{12500}.
x=\frac{-\sqrt{160221897609}-10397}{25000}
Whakawehe \frac{-10397-\sqrt{160221897609}}{12500} ki te 2.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
Kua oti te whārite te whakatau.
x^{2}=83176\times 10^{-5}\left(-x+308\right)
Tē taea kia ōrite te tāupe x ki 308 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -x+308.
x^{2}=83176\times \frac{1}{100000}\left(-x+308\right)
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
x^{2}=\frac{10397}{12500}\left(-x+308\right)
Whakareatia te 83176 ki te \frac{1}{100000}, ka \frac{10397}{12500}.
x^{2}=-\frac{10397}{12500}x+\frac{800569}{3125}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{10397}{12500} ki te -x+308.
x^{2}+\frac{10397}{12500}x=\frac{800569}{3125}
Me tāpiri te \frac{10397}{12500}x ki ngā taha e rua.
x^{2}+\frac{10397}{12500}x+\left(\frac{10397}{25000}\right)^{2}=\frac{800569}{3125}+\left(\frac{10397}{25000}\right)^{2}
Whakawehea te \frac{10397}{12500}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{10397}{25000}. Nā, tāpiria te pūrua o te \frac{10397}{25000} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{800569}{3125}+\frac{108097609}{625000000}
Pūruatia \frac{10397}{25000} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{160221897609}{625000000}
Tāpiri \frac{800569}{3125} ki te \frac{108097609}{625000000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{10397}{25000}\right)^{2}=\frac{160221897609}{625000000}
Tauwehea x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10397}{25000}\right)^{2}}=\sqrt{\frac{160221897609}{625000000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{10397}{25000}=\frac{\sqrt{160221897609}}{25000} x+\frac{10397}{25000}=-\frac{\sqrt{160221897609}}{25000}
Whakarūnātia.
x=\frac{\sqrt{160221897609}-10397}{25000} x=\frac{-\sqrt{160221897609}-10397}{25000}
Me tango \frac{10397}{25000} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}