Aromātai
\frac{x^{3}}{3}
Kimi Pārōnaki e ai ki x
x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}\times \frac{x}{3}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{x^{2}x}{3}
Tuhia te x^{2}\times \frac{x}{3} hei hautanga kotahi.
\frac{x^{3}}{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3}x^{1})+\frac{1}{3}x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
x^{2}\times \frac{1}{3}x^{1-1}+\frac{1}{3}x^{1}\times 2x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
x^{2}\times \frac{1}{3}x^{0}+\frac{1}{3}x^{1}\times 2x^{1}
Whakarūnātia.
\frac{1}{3}x^{2}+\frac{1}{3}\times 2x^{1+1}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{1}{3}x^{2}+\frac{2}{3}x^{2}
Whakarūnātia.
\frac{1+2}{3}x^{2}
Pahekotia ngā kīanga tau ōrite.
x^{2}
Tāpiri \frac{1}{3} ki te \frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}