Whakaoti mō x
x=-\frac{10397}{12500}=-0.83176
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}=83176\times 10^{-5}x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-x^{2}=83176\times \frac{1}{100000}x
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
-x^{2}=\frac{10397}{12500}x
Whakareatia te 83176 ki te \frac{1}{100000}, ka \frac{10397}{12500}.
-x^{2}-\frac{10397}{12500}x=0
Tangohia te \frac{10397}{12500}x mai i ngā taha e rua.
x\left(-x-\frac{10397}{12500}\right)=0
Tauwehea te x.
x=0 x=-\frac{10397}{12500}
Hei kimi otinga whārite, me whakaoti te x=0 me te -x-\frac{10397}{12500}=0.
x=-\frac{10397}{12500}
Tē taea kia ōrite te tāupe x ki 0.
-x^{2}=83176\times 10^{-5}x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-x^{2}=83176\times \frac{1}{100000}x
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
-x^{2}=\frac{10397}{12500}x
Whakareatia te 83176 ki te \frac{1}{100000}, ka \frac{10397}{12500}.
-x^{2}-\frac{10397}{12500}x=0
Tangohia te \frac{10397}{12500}x mai i ngā taha e rua.
x=\frac{-\left(-\frac{10397}{12500}\right)±\sqrt{\left(-\frac{10397}{12500}\right)^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -\frac{10397}{12500} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{10397}{12500}\right)±\frac{10397}{12500}}{2\left(-1\right)}
Tuhia te pūtakerua o te \left(-\frac{10397}{12500}\right)^{2}.
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{2\left(-1\right)}
Ko te tauaro o -\frac{10397}{12500} ko \frac{10397}{12500}.
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\frac{10397}{6250}}{-2}
Nā, me whakaoti te whārite x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2} ina he tāpiri te ±. Tāpiri \frac{10397}{12500} ki te \frac{10397}{12500} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{10397}{12500}
Whakawehe \frac{10397}{6250} ki te -2.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2} ina he tango te ±. Tango \frac{10397}{12500} mai i \frac{10397}{12500} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te -2.
x=-\frac{10397}{12500} x=0
Kua oti te whārite te whakatau.
x=-\frac{10397}{12500}
Tē taea kia ōrite te tāupe x ki 0.
-x^{2}=83176\times 10^{-5}x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-x^{2}=83176\times \frac{1}{100000}x
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
-x^{2}=\frac{10397}{12500}x
Whakareatia te 83176 ki te \frac{1}{100000}, ka \frac{10397}{12500}.
-x^{2}-\frac{10397}{12500}x=0
Tangohia te \frac{10397}{12500}x mai i ngā taha e rua.
\frac{-x^{2}-\frac{10397}{12500}x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{\frac{10397}{12500}}{-1}\right)x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+\frac{10397}{12500}x=\frac{0}{-1}
Whakawehe -\frac{10397}{12500} ki te -1.
x^{2}+\frac{10397}{12500}x=0
Whakawehe 0 ki te -1.
x^{2}+\frac{10397}{12500}x+\left(\frac{10397}{25000}\right)^{2}=\left(\frac{10397}{25000}\right)^{2}
Whakawehea te \frac{10397}{12500}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{10397}{25000}. Nā, tāpiria te pūrua o te \frac{10397}{25000} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{108097609}{625000000}
Pūruatia \frac{10397}{25000} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{10397}{25000}\right)^{2}=\frac{108097609}{625000000}
Tauwehea x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10397}{25000}\right)^{2}}=\sqrt{\frac{108097609}{625000000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{10397}{25000}=\frac{10397}{25000} x+\frac{10397}{25000}=-\frac{10397}{25000}
Whakarūnātia.
x=0 x=-\frac{10397}{12500}
Me tango \frac{10397}{25000} mai i ngā taha e rua o te whārite.
x=-\frac{10397}{12500}
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}