Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}+4\left(\sqrt{155+3}\right)^{2}=36
Me whakarea ngā taha e rua o te whārite ki te 36, arā, te tauraro pātahi he tino iti rawa te kitea o 36,9.
a^{2}+4\left(\sqrt{158}\right)^{2}=36
Tāpirihia te 155 ki te 3, ka 158.
a^{2}+4\times 158=36
Ko te pūrua o \sqrt{158} ko 158.
a^{2}+632=36
Whakareatia te 4 ki te 158, ka 632.
a^{2}=36-632
Tangohia te 632 mai i ngā taha e rua.
a^{2}=-596
Tangohia te 632 i te 36, ka -596.
a=2\sqrt{149}i a=-2\sqrt{149}i
Kua oti te whārite te whakatau.
a^{2}+4\left(\sqrt{155+3}\right)^{2}=36
Me whakarea ngā taha e rua o te whārite ki te 36, arā, te tauraro pātahi he tino iti rawa te kitea o 36,9.
a^{2}+4\left(\sqrt{158}\right)^{2}=36
Tāpirihia te 155 ki te 3, ka 158.
a^{2}+4\times 158=36
Ko te pūrua o \sqrt{158} ko 158.
a^{2}+632=36
Whakareatia te 4 ki te 158, ka 632.
a^{2}+632-36=0
Tangohia te 36 mai i ngā taha e rua.
a^{2}+596=0
Tangohia te 36 i te 632, ka 596.
a=\frac{0±\sqrt{0^{2}-4\times 596}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 596 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 596}}{2}
Pūrua 0.
a=\frac{0±\sqrt{-2384}}{2}
Whakareatia -4 ki te 596.
a=\frac{0±4\sqrt{149}i}{2}
Tuhia te pūtakerua o te -2384.
a=2\sqrt{149}i
Nā, me whakaoti te whārite a=\frac{0±4\sqrt{149}i}{2} ina he tāpiri te ±.
a=-2\sqrt{149}i
Nā, me whakaoti te whārite a=\frac{0±4\sqrt{149}i}{2} ina he tango te ±.
a=2\sqrt{149}i a=-2\sqrt{149}i
Kua oti te whārite te whakatau.