\frac{ { 9 }^{ 2 } \frac{ 9 }{ { \left(6 \frac{ 6 }{ \sqrt{ 6 } } \right) }^{ 2 } } }{ }
Aromātai
\frac{27}{8}=3.375
Tauwehe
\frac{3 ^ {3}}{2 ^ {3}} = 3\frac{3}{8} = 3.375
Tohaina
Kua tāruatia ki te papatopenga
\frac{81\times \frac{9}{\left(6\times \frac{6}{\sqrt{6}}\right)^{2}}}{1}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
\frac{81\times \frac{9}{\left(6\times \frac{6\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\right)^{2}}}{1}
Whakangāwaritia te tauraro o \frac{6}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{81\times \frac{9}{\left(6\times \frac{6\sqrt{6}}{6}\right)^{2}}}{1}
Ko te pūrua o \sqrt{6} ko 6.
\frac{81\times \frac{9}{\left(6\sqrt{6}\right)^{2}}}{1}
Me whakakore te 6 me te 6.
\frac{81\times \frac{9}{6^{2}\left(\sqrt{6}\right)^{2}}}{1}
Whakarohaina te \left(6\sqrt{6}\right)^{2}.
\frac{81\times \frac{9}{36\left(\sqrt{6}\right)^{2}}}{1}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{81\times \frac{9}{36\times 6}}{1}
Ko te pūrua o \sqrt{6} ko 6.
\frac{81\times \frac{9}{216}}{1}
Whakareatia te 36 ki te 6, ka 216.
\frac{81\times \frac{1}{24}}{1}
Whakahekea te hautanga \frac{9}{216} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{\frac{27}{8}}{1}
Whakareatia te 81 ki te \frac{1}{24}, ka \frac{27}{8}.
\frac{27}{8}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}