Aromātai
\frac{67}{28}\approx 2.392857143
Tauwehe
\frac{67}{2 ^ {2} \cdot 7} = 2\frac{11}{28} = 2.392857142857143
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{8}+\left(\frac{2}{3}\right)^{-2}-5^{0}}{\left(\frac{2}{3}\right)^{-2}+4^{-1}-7^{0}}+\frac{31}{21}
Tātaihia te 8 mā te pū o -1, kia riro ko \frac{1}{8}.
\frac{\frac{1}{8}+\frac{9}{4}-5^{0}}{\left(\frac{2}{3}\right)^{-2}+4^{-1}-7^{0}}+\frac{31}{21}
Tātaihia te \frac{2}{3} mā te pū o -2, kia riro ko \frac{9}{4}.
\frac{\frac{19}{8}-5^{0}}{\left(\frac{2}{3}\right)^{-2}+4^{-1}-7^{0}}+\frac{31}{21}
Tāpirihia te \frac{1}{8} ki te \frac{9}{4}, ka \frac{19}{8}.
\frac{\frac{19}{8}-1}{\left(\frac{2}{3}\right)^{-2}+4^{-1}-7^{0}}+\frac{31}{21}
Tātaihia te 5 mā te pū o 0, kia riro ko 1.
\frac{\frac{11}{8}}{\left(\frac{2}{3}\right)^{-2}+4^{-1}-7^{0}}+\frac{31}{21}
Tangohia te 1 i te \frac{19}{8}, ka \frac{11}{8}.
\frac{\frac{11}{8}}{\frac{9}{4}+4^{-1}-7^{0}}+\frac{31}{21}
Tātaihia te \frac{2}{3} mā te pū o -2, kia riro ko \frac{9}{4}.
\frac{\frac{11}{8}}{\frac{9}{4}+\frac{1}{4}-7^{0}}+\frac{31}{21}
Tātaihia te 4 mā te pū o -1, kia riro ko \frac{1}{4}.
\frac{\frac{11}{8}}{\frac{5}{2}-7^{0}}+\frac{31}{21}
Tāpirihia te \frac{9}{4} ki te \frac{1}{4}, ka \frac{5}{2}.
\frac{\frac{11}{8}}{\frac{5}{2}-1}+\frac{31}{21}
Tātaihia te 7 mā te pū o 0, kia riro ko 1.
\frac{\frac{11}{8}}{\frac{3}{2}}+\frac{31}{21}
Tangohia te 1 i te \frac{5}{2}, ka \frac{3}{2}.
\frac{11}{8}\times \frac{2}{3}+\frac{31}{21}
Whakawehe \frac{11}{8} ki te \frac{3}{2} mā te whakarea \frac{11}{8} ki te tau huripoki o \frac{3}{2}.
\frac{11}{12}+\frac{31}{21}
Whakareatia te \frac{11}{8} ki te \frac{2}{3}, ka \frac{11}{12}.
\frac{67}{28}
Tāpirihia te \frac{11}{12} ki te \frac{31}{21}, ka \frac{67}{28}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}