Aromātai
\frac{64}{3}\approx 21.333333333
Tauwehe
\frac{2 ^ {6}}{3} = 21\frac{1}{3} = 21.333333333333332
Tohaina
Kua tāruatia ki te papatopenga
\frac{4^{4}}{3}-4^{3}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 1 i te 4 kia riro ai te 3.
\frac{256}{3}-4^{3}
Tātaihia te 4 mā te pū o 4, kia riro ko 256.
\frac{256}{3}-64
Tātaihia te 4 mā te pū o 3, kia riro ko 64.
\frac{256}{3}-\frac{192}{3}
Me tahuri te 64 ki te hautau \frac{192}{3}.
\frac{256-192}{3}
Tā te mea he rite te tauraro o \frac{256}{3} me \frac{192}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{64}{3}
Tangohia te 192 i te 256, ka 64.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}