Aromātai
\frac{3721\sqrt{3}}{1200\pi }\approx 1.709579017
Tohaina
Kua tāruatia ki te papatopenga
\frac{133956\times \frac{4}{\sqrt{3}}}{2\times 200\pi \times 12\times 12}
Tātaihia te 366 mā te pū o 2, kia riro ko 133956.
\frac{133956\times \frac{4\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{2\times 200\pi \times 12\times 12}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{133956\times \frac{4\sqrt{3}}{3}}{2\times 200\pi \times 12\times 12}
Ko te pūrua o \sqrt{3} ko 3.
\frac{44652\times 4\sqrt{3}}{2\times 200\pi \times 12\times 12}
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 133956 me te 3.
\frac{44652\times 4\sqrt{3}}{400\pi \times 12\times 12}
Whakareatia te 2 ki te 200, ka 400.
\frac{44652\times 4\sqrt{3}}{4800\pi \times 12}
Whakareatia te 400 ki te 12, ka 4800.
\frac{44652\times 4\sqrt{3}}{57600\pi }
Whakareatia te 4800 ki te 12, ka 57600.
\frac{3721\sqrt{3}}{1200\pi }
Me whakakore tahi te 4\times 12 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}