Aromātai
10
Tauwehe
2\times 5
Tohaina
Kua tāruatia ki te papatopenga
\frac{9\left(5+1.2\right)-5.8}{\frac{\frac{1}{2}+5^{2}}{3+2.1}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{9\times 6.2-5.8}{\frac{\frac{1}{2}+5^{2}}{3+2.1}}
Tāpirihia te 5 ki te 1.2, ka 6.2.
\frac{55.8-5.8}{\frac{\frac{1}{2}+5^{2}}{3+2.1}}
Whakareatia te 9 ki te 6.2, ka 55.8.
\frac{50}{\frac{\frac{1}{2}+5^{2}}{3+2.1}}
Tangohia te 5.8 i te 55.8, ka 50.
\frac{50}{\frac{\frac{1}{2}+25}{3+2.1}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{50}{\frac{\frac{1}{2}+\frac{50}{2}}{3+2.1}}
Me tahuri te 25 ki te hautau \frac{50}{2}.
\frac{50}{\frac{\frac{1+50}{2}}{3+2.1}}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{50}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{50}{\frac{\frac{51}{2}}{3+2.1}}
Tāpirihia te 1 ki te 50, ka 51.
\frac{50}{\frac{\frac{51}{2}}{5.1}}
Tāpirihia te 3 ki te 2.1, ka 5.1.
\frac{50}{\frac{51}{2\times 5.1}}
Tuhia te \frac{\frac{51}{2}}{5.1} hei hautanga kotahi.
\frac{50}{\frac{51}{10.2}}
Whakareatia te 2 ki te 5.1, ka 10.2.
\frac{50}{\frac{510}{102}}
Whakarohaina te \frac{51}{10.2} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{50}{5}
Whakawehea te 510 ki te 102, kia riro ko 5.
10
Whakawehea te 50 ki te 5, kia riro ko 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}