Whakaoti mō x
x=2\sqrt{10}\approx 6.32455532
x=-2\sqrt{10}\approx -6.32455532
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{125}\times 25^{2}+x^{2}=45
Whakareatia ngā taha e rua o te whārite ki te 45.
\frac{1}{125}\times 625+x^{2}=45
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
5+x^{2}=45
Whakareatia te \frac{1}{125} ki te 625, ka 5.
x^{2}=45-5
Tangohia te 5 mai i ngā taha e rua.
x^{2}=40
Tangohia te 5 i te 45, ka 40.
x=2\sqrt{10} x=-2\sqrt{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{1}{125}\times 25^{2}+x^{2}=45
Whakareatia ngā taha e rua o te whārite ki te 45.
\frac{1}{125}\times 625+x^{2}=45
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
5+x^{2}=45
Whakareatia te \frac{1}{125} ki te 625, ka 5.
5+x^{2}-45=0
Tangohia te 45 mai i ngā taha e rua.
-40+x^{2}=0
Tangohia te 45 i te 5, ka -40.
x^{2}-40=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-40\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-40\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{160}}{2}
Whakareatia -4 ki te -40.
x=\frac{0±4\sqrt{10}}{2}
Tuhia te pūtakerua o te 160.
x=2\sqrt{10}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{10}}{2} ina he tāpiri te ±.
x=-2\sqrt{10}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{10}}{2} ina he tango te ±.
x=2\sqrt{10} x=-2\sqrt{10}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}