Whakaoti mō x
x=30\sqrt{2}\approx 42.426406871
x=-30\sqrt{2}\approx -42.426406871
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{625}{75^{2}}+\frac{x^{2}}{45^{2}}=1
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
\frac{625}{5625}+\frac{x^{2}}{45^{2}}=1
Tātaihia te 75 mā te pū o 2, kia riro ko 5625.
\frac{1}{9}+\frac{x^{2}}{45^{2}}=1
Whakahekea te hautanga \frac{625}{5625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 625.
\frac{1}{9}+\frac{x^{2}}{2025}=1
Tātaihia te 45 mā te pū o 2, kia riro ko 2025.
\frac{225}{2025}+\frac{x^{2}}{2025}=1
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 2025 ko 2025. Whakareatia \frac{1}{9} ki te \frac{225}{225}.
\frac{225+x^{2}}{2025}=1
Tā te mea he rite te tauraro o \frac{225}{2025} me \frac{x^{2}}{2025}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{9}+\frac{1}{2025}x^{2}=1
Whakawehea ia wā o 225+x^{2} ki te 2025, kia riro ko \frac{1}{9}+\frac{1}{2025}x^{2}.
\frac{1}{2025}x^{2}=1-\frac{1}{9}
Tangohia te \frac{1}{9} mai i ngā taha e rua.
\frac{1}{2025}x^{2}=\frac{8}{9}
Tangohia te \frac{1}{9} i te 1, ka \frac{8}{9}.
x^{2}=\frac{8}{9}\times 2025
Me whakarea ngā taha e rua ki te 2025, te tau utu o \frac{1}{2025}.
x^{2}=1800
Whakareatia te \frac{8}{9} ki te 2025, ka 1800.
x=30\sqrt{2} x=-30\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{625}{75^{2}}+\frac{x^{2}}{45^{2}}=1
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
\frac{625}{5625}+\frac{x^{2}}{45^{2}}=1
Tātaihia te 75 mā te pū o 2, kia riro ko 5625.
\frac{1}{9}+\frac{x^{2}}{45^{2}}=1
Whakahekea te hautanga \frac{625}{5625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 625.
\frac{1}{9}+\frac{x^{2}}{2025}=1
Tātaihia te 45 mā te pū o 2, kia riro ko 2025.
\frac{225}{2025}+\frac{x^{2}}{2025}=1
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 2025 ko 2025. Whakareatia \frac{1}{9} ki te \frac{225}{225}.
\frac{225+x^{2}}{2025}=1
Tā te mea he rite te tauraro o \frac{225}{2025} me \frac{x^{2}}{2025}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{9}+\frac{1}{2025}x^{2}=1
Whakawehea ia wā o 225+x^{2} ki te 2025, kia riro ko \frac{1}{9}+\frac{1}{2025}x^{2}.
\frac{1}{9}+\frac{1}{2025}x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
-\frac{8}{9}+\frac{1}{2025}x^{2}=0
Tangohia te 1 i te \frac{1}{9}, ka -\frac{8}{9}.
\frac{1}{2025}x^{2}-\frac{8}{9}=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2025}\left(-\frac{8}{9}\right)}}{2\times \frac{1}{2025}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2025} mō a, 0 mō b, me -\frac{8}{9} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{2025}\left(-\frac{8}{9}\right)}}{2\times \frac{1}{2025}}
Pūrua 0.
x=\frac{0±\sqrt{-\frac{4}{2025}\left(-\frac{8}{9}\right)}}{2\times \frac{1}{2025}}
Whakareatia -4 ki te \frac{1}{2025}.
x=\frac{0±\sqrt{\frac{32}{18225}}}{2\times \frac{1}{2025}}
Whakareatia -\frac{4}{2025} ki te -\frac{8}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{0±\frac{4\sqrt{2}}{135}}{2\times \frac{1}{2025}}
Tuhia te pūtakerua o te \frac{32}{18225}.
x=\frac{0±\frac{4\sqrt{2}}{135}}{\frac{2}{2025}}
Whakareatia 2 ki te \frac{1}{2025}.
x=30\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±\frac{4\sqrt{2}}{135}}{\frac{2}{2025}} ina he tāpiri te ±.
x=-30\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±\frac{4\sqrt{2}}{135}}{\frac{2}{2025}} ina he tango te ±.
x=30\sqrt{2} x=-30\sqrt{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}