Whakaoti mō t
t = \frac{32}{7} = 4\frac{4}{7} \approx 4.571428571
Tohaina
Kua tāruatia ki te papatopenga
17\left(20^{2}+\left(1.5t\right)^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Tē taea kia ōrite te tāupe t ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 1020t, arā, te tauraro pātahi he tino iti rawa te kitea o 60t,-102t.
17\left(400+\left(1.5t\right)^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
17\left(400+1.5^{2}t^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Whakarohaina te \left(1.5t\right)^{2}.
17\left(400+2.25t^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Tātaihia te 1.5 mā te pū o 2, kia riro ko 2.25.
17\left(400+2.25t^{2}-\left(144+36t+2.25t^{2}\right)\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(12+1.5t\right)^{2}.
17\left(400+2.25t^{2}-144-36t-2.25t^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Hei kimi i te tauaro o 144+36t+2.25t^{2}, kimihia te tauaro o ia taurangi.
17\left(256+2.25t^{2}-36t-2.25t^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Tangohia te 144 i te 400, ka 256.
17\left(256-36t\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Pahekotia te 2.25t^{2} me -2.25t^{2}, ka 0.
4352-612t=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 17 ki te 256-36t.
4352-612t=-10\left(1156+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Tātaihia te 34 mā te pū o 2, kia riro ko 1156.
4352-612t=-10\left(1156+1.5^{2}t^{2}-\left(30+1.5t\right)^{2}\right)
Whakarohaina te \left(1.5t\right)^{2}.
4352-612t=-10\left(1156+2.25t^{2}-\left(30+1.5t\right)^{2}\right)
Tātaihia te 1.5 mā te pū o 2, kia riro ko 2.25.
4352-612t=-10\left(1156+2.25t^{2}-\left(900+90t+2.25t^{2}\right)\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(30+1.5t\right)^{2}.
4352-612t=-10\left(1156+2.25t^{2}-900-90t-2.25t^{2}\right)
Hei kimi i te tauaro o 900+90t+2.25t^{2}, kimihia te tauaro o ia taurangi.
4352-612t=-10\left(256+2.25t^{2}-90t-2.25t^{2}\right)
Tangohia te 900 i te 1156, ka 256.
4352-612t=-10\left(256-90t\right)
Pahekotia te 2.25t^{2} me -2.25t^{2}, ka 0.
4352-612t=-2560+900t
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te 256-90t.
4352-612t-900t=-2560
Tangohia te 900t mai i ngā taha e rua.
4352-1512t=-2560
Pahekotia te -612t me -900t, ka -1512t.
-1512t=-2560-4352
Tangohia te 4352 mai i ngā taha e rua.
-1512t=-6912
Tangohia te 4352 i te -2560, ka -6912.
t=\frac{-6912}{-1512}
Whakawehea ngā taha e rua ki te -1512.
t=\frac{32}{7}
Whakahekea te hautanga \frac{-6912}{-1512} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -216.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}