Aromātai
\frac{3}{61035156250000000000000000000000000000000000}=4.9152 \cdot 10^{-44}
Tauwehe
\frac{3}{2 ^ {34} \cdot 5 ^ {48}} = 4.9152000000000005 \times 10^{-44}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-27\right)^{3}\times 32^{-5}\left(-8\right)^{5}\times 25^{-12}}{\left(-72\right)^{4}\left(-50^{3}\right)^{4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -6 kia riro ai te -12.
\frac{-19683\times 32^{-5}\left(-8\right)^{5}\times 25^{-12}}{\left(-72\right)^{4}\left(-50^{3}\right)^{4}}
Tātaihia te -27 mā te pū o 3, kia riro ko -19683.
\frac{-19683\times \frac{1}{33554432}\left(-8\right)^{5}\times 25^{-12}}{\left(-72\right)^{4}\left(-50^{3}\right)^{4}}
Tātaihia te 32 mā te pū o -5, kia riro ko \frac{1}{33554432}.
\frac{-\frac{19683}{33554432}\left(-8\right)^{5}\times 25^{-12}}{\left(-72\right)^{4}\left(-50^{3}\right)^{4}}
Whakareatia te -19683 ki te \frac{1}{33554432}, ka -\frac{19683}{33554432}.
\frac{-\frac{19683}{33554432}\left(-32768\right)\times 25^{-12}}{\left(-72\right)^{4}\left(-50^{3}\right)^{4}}
Tātaihia te -8 mā te pū o 5, kia riro ko -32768.
\frac{\frac{19683}{1024}\times 25^{-12}}{\left(-72\right)^{4}\left(-50^{3}\right)^{4}}
Whakareatia te -\frac{19683}{33554432} ki te -32768, ka \frac{19683}{1024}.
\frac{\frac{19683}{1024}\times \frac{1}{59604644775390625}}{\left(-72\right)^{4}\left(-50^{3}\right)^{4}}
Tātaihia te 25 mā te pū o -12, kia riro ko \frac{1}{59604644775390625}.
\frac{\frac{19683}{61035156250000000000}}{\left(-72\right)^{4}\left(-50^{3}\right)^{4}}
Whakareatia te \frac{19683}{1024} ki te \frac{1}{59604644775390625}, ka \frac{19683}{61035156250000000000}.
\frac{\frac{19683}{61035156250000000000}}{26873856\left(-50^{3}\right)^{4}}
Tātaihia te -72 mā te pū o 4, kia riro ko 26873856.
\frac{\frac{19683}{61035156250000000000}}{26873856\left(-125000\right)^{4}}
Tātaihia te 50 mā te pū o 3, kia riro ko 125000.
\frac{\frac{19683}{61035156250000000000}}{26873856\times 244140625000000000000}
Tātaihia te -125000 mā te pū o 4, kia riro ko 244140625000000000000.
\frac{\frac{19683}{61035156250000000000}}{6561000000000000000000000000}
Whakareatia te 26873856 ki te 244140625000000000000, ka 6561000000000000000000000000.
\frac{19683}{61035156250000000000\times 6561000000000000000000000000}
Tuhia te \frac{\frac{19683}{61035156250000000000}}{6561000000000000000000000000} hei hautanga kotahi.
\frac{19683}{400451660156250000000000000000000000000000000000}
Whakareatia te 61035156250000000000 ki te 6561000000000000000000000000, ka 400451660156250000000000000000000000000000000000.
\frac{3}{61035156250000000000000000000000000000000000}
Whakahekea te hautanga \frac{19683}{400451660156250000000000000000000000000000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6561.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}