Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\left(7-2\right)^{2}\times 2+4\right)\times 10}{\left(\sqrt{64}+3\times 4\right)\times 27}
Whakawehe \frac{\left(7-2\right)^{2}\times 2+4}{\sqrt{64}+3\times 4} ki te \frac{27}{10} mā te whakarea \frac{\left(7-2\right)^{2}\times 2+4}{\sqrt{64}+3\times 4} ki te tau huripoki o \frac{27}{10}.
\frac{\left(5^{2}\times 2+4\right)\times 10}{\left(\sqrt{64}+3\times 4\right)\times 27}
Tangohia te 2 i te 7, ka 5.
\frac{\left(25\times 2+4\right)\times 10}{\left(\sqrt{64}+3\times 4\right)\times 27}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{\left(50+4\right)\times 10}{\left(\sqrt{64}+3\times 4\right)\times 27}
Whakareatia te 25 ki te 2, ka 50.
\frac{54\times 10}{\left(\sqrt{64}+3\times 4\right)\times 27}
Tāpirihia te 50 ki te 4, ka 54.
\frac{540}{\left(\sqrt{64}+3\times 4\right)\times 27}
Whakareatia te 54 ki te 10, ka 540.
\frac{540}{\left(8+3\times 4\right)\times 27}
Tātaitia te pūtakerua o 64 kia tae ki 8.
\frac{540}{\left(8+12\right)\times 27}
Whakareatia te 3 ki te 4, ka 12.
\frac{540}{20\times 27}
Tāpirihia te 8 ki te 12, ka 20.
\frac{540}{540}
Whakareatia te 20 ki te 27, ka 540.
1
Whakawehea te 540 ki te 540, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}