Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(5xy\right)^{-8}\times 3x^{-2}y}{x^{12}y^{-2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 4 kia riro ai te 12.
\frac{3\times \left(5xy\right)^{-8}x^{-2}y^{3}}{x^{12}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{3\times \left(5xy\right)^{-8}y^{3}}{x^{14}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{3\times 5^{-8}x^{-8}y^{-8}y^{3}}{x^{14}}
Whakarohaina te \left(5xy\right)^{-8}.
\frac{3\times \frac{1}{390625}x^{-8}y^{-8}y^{3}}{x^{14}}
Tātaihia te 5 mā te pū o -8, kia riro ko \frac{1}{390625}.
\frac{\frac{3}{390625}x^{-8}y^{-8}y^{3}}{x^{14}}
Whakareatia te 3 ki te \frac{1}{390625}, ka \frac{3}{390625}.
\frac{\frac{3}{390625}x^{-8}y^{-5}}{x^{14}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -8 me te 3 kia riro ai te -5.
\frac{\frac{3}{390625}y^{-5}}{x^{22}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\left(5xy\right)^{-8}\times 3x^{-2}y}{x^{12}y^{-2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 4 kia riro ai te 12.
\frac{3\times \left(5xy\right)^{-8}x^{-2}y^{3}}{x^{12}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{3\times \left(5xy\right)^{-8}y^{3}}{x^{14}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{3\times 5^{-8}x^{-8}y^{-8}y^{3}}{x^{14}}
Whakarohaina te \left(5xy\right)^{-8}.
\frac{3\times \frac{1}{390625}x^{-8}y^{-8}y^{3}}{x^{14}}
Tātaihia te 5 mā te pū o -8, kia riro ko \frac{1}{390625}.
\frac{\frac{3}{390625}x^{-8}y^{-8}y^{3}}{x^{14}}
Whakareatia te 3 ki te \frac{1}{390625}, ka \frac{3}{390625}.
\frac{\frac{3}{390625}x^{-8}y^{-5}}{x^{14}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -8 me te 3 kia riro ai te -5.
\frac{\frac{3}{390625}y^{-5}}{x^{22}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.