Aromātai
\frac{1}{2048x^{5}y^{7}}
Whakaroha
\frac{1}{2048x^{5}y^{7}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{16^{-2}\left(y^{3}\right)^{-2}\left(x^{2}\right)^{-2}}{8yx}
Whakarohaina te \left(16y^{3}x^{2}\right)^{-2}.
\frac{16^{-2}y^{-6}\left(x^{2}\right)^{-2}}{8yx}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te -2 kia riro ai te -6.
\frac{16^{-2}y^{-6}x^{-4}}{8yx}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -2 kia riro ai te -4.
\frac{\frac{1}{256}y^{-6}x^{-4}}{8yx}
Tātaihia te 16 mā te pū o -2, kia riro ko \frac{1}{256}.
\frac{\frac{1}{256}}{8x^{5}y^{7}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1}{256\times 8x^{5}y^{7}}
Tuhia te \frac{\frac{1}{256}}{8x^{5}y^{7}} hei hautanga kotahi.
\frac{1}{2048x^{5}y^{7}}
Whakareatia te 256 ki te 8, ka 2048.
\frac{16^{-2}\left(y^{3}\right)^{-2}\left(x^{2}\right)^{-2}}{8yx}
Whakarohaina te \left(16y^{3}x^{2}\right)^{-2}.
\frac{16^{-2}y^{-6}\left(x^{2}\right)^{-2}}{8yx}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te -2 kia riro ai te -6.
\frac{16^{-2}y^{-6}x^{-4}}{8yx}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -2 kia riro ai te -4.
\frac{\frac{1}{256}y^{-6}x^{-4}}{8yx}
Tātaihia te 16 mā te pū o -2, kia riro ko \frac{1}{256}.
\frac{\frac{1}{256}}{8x^{5}y^{7}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1}{256\times 8x^{5}y^{7}}
Tuhia te \frac{\frac{1}{256}}{8x^{5}y^{7}} hei hautanga kotahi.
\frac{1}{2048x^{5}y^{7}}
Whakareatia te 256 ki te 8, ka 2048.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}