Aromātai
\sqrt{3}\approx 1.732050808
Whakaroha
\sqrt{3} = 1.732050808
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Pahekotia te \sqrt{3} me \sqrt{3}, ka 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tangohia te 1 i te 1, ka 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Tāpirihia te 3 ki te 1, ka 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Tāpirihia te 3 ki te 1, ka 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
Hei kimi i te tauaro o 4-2\sqrt{3}, kimihia te tauaro o ia taurangi.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Tangohia te 4 i te 4, ka 0.
\frac{12}{4\sqrt{3}}
Pahekotia te 2\sqrt{3} me 2\sqrt{3}, ka 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{12}{4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{3}
Me whakakore tahi te 3\times 4 i te taurunga me te tauraro.
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Pahekotia te \sqrt{3} me \sqrt{3}, ka 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tangohia te 1 i te 1, ka 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Tāpirihia te 3 ki te 1, ka 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Tāpirihia te 3 ki te 1, ka 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
Hei kimi i te tauaro o 4-2\sqrt{3}, kimihia te tauaro o ia taurangi.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Tangohia te 4 i te 4, ka 0.
\frac{12}{4\sqrt{3}}
Pahekotia te 2\sqrt{3} me 2\sqrt{3}, ka 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{12}{4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{3}
Me whakakore tahi te 3\times 4 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}