Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Pahekotia te \sqrt{3} me \sqrt{3}, ka 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tangohia te 1 i te 1, ka 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Tāpirihia te 3 ki te 1, ka 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Tāpirihia te 3 ki te 1, ka 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
Hei kimi i te tauaro o 4-2\sqrt{3}, kimihia te tauaro o ia taurangi.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Tangohia te 4 i te 4, ka 0.
\frac{12}{4\sqrt{3}}
Pahekotia te 2\sqrt{3} me 2\sqrt{3}, ka 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{12}{4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{3}
Me whakakore tahi te 3\times 4 i te taurunga me te tauraro.
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Pahekotia te \sqrt{3} me \sqrt{3}, ka 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tangohia te 1 i te 1, ka 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Tāpirihia te 3 ki te 1, ka 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
Ko te pūrua o \sqrt{3} ko 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Tāpirihia te 3 ki te 1, ka 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
Hei kimi i te tauaro o 4-2\sqrt{3}, kimihia te tauaro o ia taurangi.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Tangohia te 4 i te 4, ka 0.
\frac{12}{4\sqrt{3}}
Pahekotia te 2\sqrt{3} me 2\sqrt{3}, ka 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{12}{4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{3}
Me whakakore tahi te 3\times 4 i te taurunga me te tauraro.